Construction and improvement of English vocabulary learning model integrating spiking neural network and convolutional long short-term memory algorithm

被引:2
|
作者
Wang, Yunxia [1 ]
机构
[1] Nanyang Med Coll, Nanyang, Henan, Peoples R China
来源
PLOS ONE | 2024年 / 19卷 / 03期
关键词
CNN-LSTM; CLASSIFICATION; CONVLSTM;
D O I
10.1371/journal.pone.0299425
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
To help non-native English speakers quickly master English vocabulary, and improve reading, writing, listening and speaking skills, and communication skills, this study designs, constructs, and improves an English vocabulary learning model that integrates Spiking Neural Network (SNN) and Convolutional Long Short-Term Memory (Conv LSTM) algorithms. The fusion of SNN and Conv LSTM algorithm can fully utilize the advantages of SNN in processing temporal information and Conv LSTM in sequence data modeling, and implement a fusion model that performs well in English vocabulary learning. By adding information transfer and interaction modules, the feature learning and the timing information processing are optimized to improve the vocabulary learning ability of the model in different text contents. The training set used in this study is an open data set from the WordNet and Oxford English Corpus data corpora. The model is presented as a computer program and applied to an English learning application program, an online vocabulary learning platform, or a language education software. The experiment will use the open data set to generate a test set with text volume ranging from 100 to 4000. The performance indicators of the proposed fusion model are compared with those of five traditional models and applied to the latest vocabulary exercises. From the perspective of learners, 10 kinds of model accuracy, loss, polysemy processing accuracy, training time, syntactic structure capturing accuracy, vocabulary coverage, F1-score, context understanding accuracy, word sense disambiguation accuracy, and word order relation processing accuracy are considered. The experimental results reveal that the performance of the fusion model is better under different text sizes. In the range of 100-400 text volume, the accuracy is 0.75-0.77, the loss is less than 0.45, the F1-score is greater than 0.75, the training time is within 300s, and the other performance indicators are more than 65%; In the range of 500-1000 text volume, the accuracy is 0.81-0.83, the loss is not more than 0.40, the F1-score is not less than 0.78, the training time is within 400s, and the other performance indicators are above 70%; In the range of 1500-3000 text volume, the accuracy is 0.82-0.84, the loss is less than 0.28, the F1-score is not less than 0.78, the training time is within 600s, and the remaining performance indicators are higher than 70%. The fusion model can adapt to various types of questions in practical application. After the evaluation of professional teachers, the average scores of the choice, filling-in-the-blank, spelling, matching, exercises, and synonyms are 85.72, 89.45, 80.31, 92.15, 87.62, and 78.94, which are much higher than other traditional models. This shows that as text volume increases, the performance of the fusion model is gradually improved, indicating higher accuracy and lower loss. At the same time, in practical application, the fusion model proposed in this study has a good effect on English learning tasks and offers greater benefits for people unfamiliar with English vocabulary structure, grammar, and question types. This study aims to provide efficient and accurate natural language processing tools to help non-native English speakers understand and apply language more easily, and improve English vocabulary learning and comprehension.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Early Detection of Potato Disease Using an Enhanced Convolutional Neural Network-Long Short-Term Memory Deep Learning Model
    Alzakari, Sarah A.
    Alhussan, Amel Ali
    Qenawy, Al-Seyday T.
    Elshewey, Ahmed M.
    POTATO RESEARCH, 2024, : 695 - 713
  • [32] Hybrid Deep Learning Network Intrusion Detection System Based on Convolutional Neural Network and Bidirectional Long Short-Term Memory
    Jihado, Anindra Ageng
    Girsang, Abba Suganda
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2024, 15 (02) : 219 - 232
  • [33] Forecasting nonadiabatic dynamics using hybrid convolutional neural network/long short-term memory network
    Wu, Daxin
    Hu, Zhubin
    Li, Jiebo
    Sun, Xiang
    JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (22):
  • [34] Lithium battery capacity prediction method based on sparrow algorithm to optimize convolutional neural network and bidirectional long short-term memory network model
    Yang, Weiman
    Du, Jie
    Ye, Hao
    2024 6TH ASIA ENERGY AND ELECTRICAL ENGINEERING SYMPOSIUM, AEEES 2024, 2024, : 484 - 489
  • [35] Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms
    Ghimire, Sujan
    Deo, Ravinesh C.
    Raj, Nawin
    Mi, Jianchun
    APPLIED ENERGY, 2019, 253
  • [36] COMPARATIVE STUDY OF CONVOLUTIONAL NEURAL NETWORK AND LONG SHORT-TERM MEMORY NETWORK FOR SOLAR IRRADIANCE FORECASTING
    Behera, Sasmita
    Bhoi, Sapnil S.
    Mishra, Asutosh
    Nayak, Silon S.
    Panda, Subrat K.
    Patnaik, Soumik S.
    JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2022, 17 (03): : 1845 - 1856
  • [37] Coupled convolutional neural network with long short-term memory network for predicting lake water temperature
    Yang, Huajian
    Chen, Chuqiang
    Xue, Xinhua
    JOURNAL OF HYDROLOGY, 2025, 655
  • [38] A short-term prediction model of global ionospheric VTEC based on the combination of long short-term memory and convolutional long short-term memory
    Peng Chen
    Rong Wang
    Yibin Yao
    Hao Chen
    Zhihao Wang
    Zhiyuan An
    Journal of Geodesy, 2023, 97
  • [39] A short-term prediction model of global ionospheric VTEC based on the combination of long short-term memory and convolutional long short-term memory
    Chen, Peng
    Wang, Rong
    Yao, Yibin
    Chen, Hao
    Wang, Zhihao
    An, Zhiyuan
    JOURNAL OF GEODESY, 2023, 97 (05)
  • [40] Tiny-RainNet: a deep convolutional neural network with bi-directional long short-term memory model for short-term rainfall prediction
    Zhang, Chang-Jiang
    Wang, Hui-Yuan
    Zeng, Jing
    Ma, Lei-Ming
    Guan, Li
    METEOROLOGICAL APPLICATIONS, 2020, 27 (05)