Data-driven models and digital twins for sustainable combustion technologies

被引:2
|
作者
Parente, Alessandro [1 ,2 ,3 ,4 ]
Swaminathan, Nedunchezhian [5 ]
机构
[1] Univ Libre Bruxelles, Ecole Polytech Bruxelles, Aerothermo Mech Dept, Ave Franklin D,Roosevelt 50, B-1050 Brussels, Belgium
[2] WEL Res Inst, Ave Pasteur 6, B-1300 Wavre, Belgium
[3] Univ Libre Bruxelles, Brussels Inst Thermal Fluid Syst & Clean Energy B, B-1050 Ixelles, Belgium
[4] Vrije Univ Brussel, B-1050 Ixelles, Belgium
[5] Univ Cambridge, Dept Engn, Hopkinson Lab, Cambridge CB2 1PZ, England
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”; 欧洲研究理事会;
关键词
PRINCIPAL COMPONENT ANALYSIS; DIRECT NUMERICAL-SIMULATION; GENERATIVE ADVERSARIAL NETWORKS; PROPER ORTHOGONAL DECOMPOSITION; CONVOLUTIONAL NEURAL-NETWORKS; NOX EMISSIONS; TURBULENT; LES; IDENTIFICATION; FRAMEWORK;
D O I
10.1016/j.isci.2024.109349
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We highlight the critical role of data in developing sustainable combustion technologies for industries requiring high -density and localized energy sources. Combustion systems are complex and difficult to predict, and high-fidelity simulations are out of reach for practical systems because of computational cost. Data -driven approaches and artificial intelligence offer promising solutions, enabling renewable synthetic fuels to meet decarbonization goals. We discuss open challenges associated with the availability and fidelity of data, physics -based numerical simulations, and machine learning, focusing on developing digital twins capable of mirroring the behavior of industrial combustion systems and continuously updating based on newly available information.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] A Framework for Sustainable and Data-driven Smart Campus
    Kostepen, Zeynep Nur
    Akkol, Ekin
    Dogan, Onur
    Bitim, Semih
    Hiziroglu, Abdulkadir
    PROCEEDINGS OF THE 22ND INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS (ICEIS), VOL 2, 2020, : 746 - 753
  • [42] Data-driven design of sustainable production networks
    Schuh G.
    Schmitz S.
    Schlosser T.X.
    Janssen B.
    WT Werkstattstechnik, 2023, 113 (04): : 4 - 10
  • [43] Digital twins, big data governance, and sustainable tourism
    Rahmadian, Eko
    Feitosa, Daniel
    Virantina, Yulia
    ETHICS AND INFORMATION TECHNOLOGY, 2023, 25 (04)
  • [44] Digital twins, big data governance, and sustainable tourism
    Eko Rahmadian
    Daniel Feitosa
    Yulia Virantina
    Ethics and Information Technology, 2023, 25
  • [45] DEVELOPMENT AND ASSESSMENT OF DATA-DRIVEN DIGITAL TWINS IN A NEARLY AUTONOMOUS MANAGEMENT AND CONTROL SYSTEM FOR ADVANCED REACTORS
    Lin, Linyu
    Rouxelin, Pascal
    Athe, Paridhi
    Dinh, Nam
    Lane, Jeffrey
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING (ICONE2020), VOL 1, 2020,
  • [46] Data-Driven Digital Twins for Technical Building Services Operation in Factories: A Cooling Tower Case Study
    Blume, Christine
    Blume, Stefan
    Thiede, Sebastian
    Herrmann, Christoph
    JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2020, 4 (04):
  • [47] Data-driven models of nonautonomous systems
    Lu, Hannah
    Tartakovsky, Daniel M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 507
  • [48] Prospect certainty for data-driven models
    Qais Yousef
    Pu Li
    Scientific Reports, 15 (1)
  • [49] DATA-DRIVEN DYNAMIC DECISION MODELS
    Nay, John J.
    Gilligan, Jonathan M.
    2015 WINTER SIMULATION CONFERENCE (WSC), 2015, : 2752 - 2763
  • [50] Structural health monitoring system based on digital twins and real-time data-driven methods
    Li, Xiao
    Zhang, Feng-Liang
    Xiang, Wei
    Liu, Wei-Xiang
    Fu, Sheng-Jie
    Structures, 2024, 70