Data-driven models and digital twins for sustainable combustion technologies

被引:2
|
作者
Parente, Alessandro [1 ,2 ,3 ,4 ]
Swaminathan, Nedunchezhian [5 ]
机构
[1] Univ Libre Bruxelles, Ecole Polytech Bruxelles, Aerothermo Mech Dept, Ave Franklin D,Roosevelt 50, B-1050 Brussels, Belgium
[2] WEL Res Inst, Ave Pasteur 6, B-1300 Wavre, Belgium
[3] Univ Libre Bruxelles, Brussels Inst Thermal Fluid Syst & Clean Energy B, B-1050 Ixelles, Belgium
[4] Vrije Univ Brussel, B-1050 Ixelles, Belgium
[5] Univ Cambridge, Dept Engn, Hopkinson Lab, Cambridge CB2 1PZ, England
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”; 欧洲研究理事会;
关键词
PRINCIPAL COMPONENT ANALYSIS; DIRECT NUMERICAL-SIMULATION; GENERATIVE ADVERSARIAL NETWORKS; PROPER ORTHOGONAL DECOMPOSITION; CONVOLUTIONAL NEURAL-NETWORKS; NOX EMISSIONS; TURBULENT; LES; IDENTIFICATION; FRAMEWORK;
D O I
10.1016/j.isci.2024.109349
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We highlight the critical role of data in developing sustainable combustion technologies for industries requiring high -density and localized energy sources. Combustion systems are complex and difficult to predict, and high-fidelity simulations are out of reach for practical systems because of computational cost. Data -driven approaches and artificial intelligence offer promising solutions, enabling renewable synthetic fuels to meet decarbonization goals. We discuss open challenges associated with the availability and fidelity of data, physics -based numerical simulations, and machine learning, focusing on developing digital twins capable of mirroring the behavior of industrial combustion systems and continuously updating based on newly available information.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Data-driven Digital Mobility Twins
    Sakr, Mahmoud
    PROCEEDINGS OF THE 7TH ACM SIGSPATIAL INTERNATIONAL WORKSHOP ON LOCATION-BASED RECOMMENDATIONS, GEOSOCIAL NETWORKS AND GEOADVERTISING, LOCALREC 2023, 2023, : 4 - 5
  • [2] A Data Structure for Developing Data-Driven Digital Twins
    Orukele, Oghenemarho
    Polette, Arnaud
    Lorenzo, Aldo Gonzalez
    Mari, Jean-Luc
    Pernot, Jean-Philippe
    PRODUCT LIFECYCLE MANAGEMENT: LEVERAGING DIGITAL TWINS, CIRCULAR ECONOMY, AND KNOWLEDGE MANAGEMENT FOR SUSTAINABLE INNOVATION, PT I, PLM 2023, 2024, 701 : 25 - 35
  • [3] Data-Driven Digital Twins of Renewable Energy Grids
    Prodanovic, Danica N.
    Andrijevic, Nikola N.
    Lakovic, Bosko R.
    Stojanovic, Boban S.
    APPLIED ARTIFICIAL INTELLIGENCE 2: MEDICINE, BIOLOGY, CHEMISTRY, FINANCIAL, GAMES, ENGINEERING, SICAAI 2023, 2024, 999 : 46 - 51
  • [4] Data-driven Simulation Optimization in the Age of Digital Twins
    Zhou, Enlu
    PROCEEDINGS OF THE 38TH ACM SIGSIM INTERNATIONAL CONFERENCE ON PRINCIPLES OF ADVANCED DISCRETE SIMULATION, ACM SIGSIM-PADS 2024, 2024, : 2 - 2
  • [5] Data-driven Decision Support by Digital Twins in Manufacturing
    Meierhofer, Jurg
    West, Shaun
    2020 7TH SWISS CONFERENCE ON DATA SCIENCE, SDS, 2020, : 53 - 54
  • [6] Risks of data-driven technologies in sustainable supply chain management
    Ozkan-Ozen, Yesim Deniz
    Sezer, Deniz
    Ozbiltekin-Pala, Melisa
    Kazancoglu, Yigit
    MANAGEMENT OF ENVIRONMENTAL QUALITY, 2023, 34 (04) : 926 - 942
  • [7] The Contribution of Data-Driven Technologies in Achieving the Sustainable Development Goals
    Bachmann, Nadine
    Tripathi, Shailesh
    Brunner, Manuel
    Jodlbauer, Herbert
    SUSTAINABILITY, 2022, 14 (05)
  • [8] Exploring the Feasibility of Data-Driven Emotion Modeling for Human Digital Twins
    de Oliveira, Catarina Dias
    Khanshan, Alireza
    Van Gorp, Pieter
    PROCEEDINGS OF THE 16TH ACM INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS, PETRA 2023, 2023, : 568 - 573
  • [9] Special Section on Data-Driven Mechanics and Digital Twins for Ocean Engineering
    Jaiman, Rajeev
    Manuel, Lance
    JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME, 2022, 144 (06):
  • [10] Explainable Data-Driven Digital Twins for Predicting Battery States in Electric Vehicles
    Njoku, Judith Nkechinyere
    Ifeanyi Nwakanma, Cosmas
    Kim, Dong-Seong
    IEEE ACCESS, 2024, 12 : 83480 - 83501