High-dimensional nonconvex LASSO-type M-estimators

被引:0
|
作者
Beyhum, Jad [1 ]
Portier, Francois [2 ]
机构
[1] Katholieke Univ Leuven, Dept Econ, Leuven, Belgium
[2] Univ Rennes, ENSAI, CREST, Rennes, France
关键词
High-dimensional statistics; Lasso; M-estimation; SELECTION;
D O I
10.1016/j.jmva.2024.105303
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A theory is developed to examine the convergence proper l1-norm penalized highdimensional M-estimators, with nonconvex risk and unrestricted domain. Under high-level root conditions, the estimators are shown to attain the rate of convergence s0 root log(nd)/n, where s0 is the number of nonzero coefficients of the parameter of interest. Sufficient conditions for our main assumptions are then developed and finally used in several examples including robust linear regression, binary classification and nonlinear least squares.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] LIMITING BEHAVIOR OF M-ESTIMATORS OF REGRESSION-COEFFICIENTS IN HIGH-DIMENSIONAL LINEAR-MODELS .2. SCALE-INVARIANT CASE
    BAI, ZD
    WU, Y
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1994, 51 (02) : 240 - 251
  • [32] Collaborative-controlled LASSO for constructing propensity score-based estimators in high-dimensional data
    Ju, Cheng
    Wyss, Richard
    Franklin, Jessica M.
    Schneeweiss, Sebastian
    Haggstrom, Jenny
    van der Laan, Mark J.
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (04) : 1044 - 1063
  • [33] Precise Error Analysis of Regularized M-Estimators in High Dimensions
    Thrampoulidis, Christos
    Abbasi, Ehsan
    Hassibi, Babak
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (08) : 5592 - 5628
  • [34] M-estimators of some GARCH-type models; computation and application
    Iqbal, Farhat
    Mukherjee, Kanchan
    [J]. STATISTICS AND COMPUTING, 2010, 20 (04) : 435 - 445
  • [35] A study on tuning parameter selection for the high-dimensional lasso
    Homrighausen, Darren
    McDonald, Daniel J.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (15) : 2865 - 2892
  • [36] Minimum Distance Lasso for robust high-dimensional regression
    Lozano, Aurelie C.
    Meinshausen, Nicolai
    Yang, Eunho
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (01): : 1296 - 1340
  • [37] ADAPTIVE LASSO FOR SPARSE HIGH-DIMENSIONAL REGRESSION MODELS
    Huang, Jian
    Ma, Shuangge
    Zhang, Cun-Hui
    [J]. STATISTICA SINICA, 2008, 18 (04) : 1603 - 1618
  • [38] Convergence and sparsity of Lasso and group Lasso in high-dimensional generalized linear models
    Lichun Wang
    Yuan You
    Heng Lian
    [J]. Statistical Papers, 2015, 56 : 819 - 828
  • [39] GENERALIZED REGRESSION ESTIMATORS WITH HIGH-DIMENSIONAL COVARIATES
    Ta, Tram
    Shao, Jun
    Li, Quefeng
    Wang, Lei
    [J]. STATISTICA SINICA, 2020, 30 (03) : 1135 - 1154
  • [40] Elementary Estimators for High-Dimensional Linear Regression
    Yang, Eunho
    Lozano, Aurelie C.
    Ravikumar, Pradeep
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 388 - 396