High-dimensional nonconvex LASSO-type M-estimators

被引:0
|
作者
Beyhum, Jad [1 ]
Portier, Francois [2 ]
机构
[1] Katholieke Univ Leuven, Dept Econ, Leuven, Belgium
[2] Univ Rennes, ENSAI, CREST, Rennes, France
关键词
High-dimensional statistics; Lasso; M-estimation; SELECTION;
D O I
10.1016/j.jmva.2024.105303
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A theory is developed to examine the convergence proper l1-norm penalized highdimensional M-estimators, with nonconvex risk and unrestricted domain. Under high-level root conditions, the estimators are shown to attain the rate of convergence s0 root log(nd)/n, where s0 is the number of nonzero coefficients of the parameter of interest. Sufficient conditions for our main assumptions are then developed and finally used in several examples including robust linear regression, binary classification and nonlinear least squares.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] LASSO-type variable selection methods for high-dimensional data
    Fu, Guanghui
    Wang, Pan
    [J]. ADVANCES IN COMPUTATIONAL MODELING AND SIMULATION, PTS 1 AND 2, 2014, 444-445 : 604 - 609
  • [2] LASSO-TYPE RECOVERY OF SPARSE REPRESENTATIONS FOR HIGH-DIMENSIONAL DATA
    Meinshausen, Nicolai
    Yu, Bin
    [J]. ANNALS OF STATISTICS, 2009, 37 (01): : 246 - 270
  • [3] Asymptotics for Lasso-type estimators
    Knight, K
    Fu, WJ
    [J]. ANNALS OF STATISTICS, 2000, 28 (05): : 1356 - 1378
  • [4] Comparison of Lasso Type Estimators for High-Dimensional Data
    Kim, Jaehee
    [J]. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2014, 21 (04) : 349 - 361
  • [5] Precise High-dimensional Error Analysis of Regularized M-Estimators
    Thrampoulidis, Christos
    Abbasi, Ehsan
    Hassibi, Babak
    [J]. 2015 53RD ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2015, : 410 - 417
  • [6] Generalized M-estimators for high-dimensional Tobit I models
    Bradic, Jelena
    Guo, Jiaqi
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2019, 13 (01): : 582 - 645
  • [7] ET-Lasso: A New Efficient Tuning of Lasso-type Regularization for High-Dimensional Data
    Yang, Songshan
    Wen, Jiawei
    Zhan, Xiang
    Kifer, Daniel
    [J]. KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 607 - 616
  • [8] STATISTICAL CONSISTENCY AND ASYMPTOTIC NORMALITY FOR HIGH-DIMENSIONAL ROBUST M-ESTIMATORS
    Loh, Po-Ling
    [J]. ANNALS OF STATISTICS, 2017, 45 (02): : 866 - 896
  • [9] A Unified Framework for High-Dimensional Analysis of M-Estimators with Decomposable Regularizers
    Negahban, Sahand N.
    Ravikumar, Pradeep
    Wainwright, Martin J.
    Yu, Bin
    [J]. STATISTICAL SCIENCE, 2012, 27 (04) : 538 - 557
  • [10] ROBUSTNESS AND TRACTABILITY FOR NONCONVEX M-ESTIMATORS
    Zhang, Ruizhi
    Mei, Yajun
    Shi, Jianjun
    Xu, Huan
    [J]. STATISTICA SINICA, 2022, 32 (03) : 1295 - 1316