Diagnosis of multiple sclerosis using optical coherence tomography supported by explainable artificial intelligence

被引:0
|
作者
Dongil-Moreno, F. J. [1 ]
Ortiz, M. [2 ]
Pueyo, A. [3 ,4 ]
Boquete, L. [1 ]
Sanchez-Morla, E. M. [5 ,6 ]
Jimeno-Huete, D. [1 ]
Miguel, J. M. [1 ]
Barea, R. [1 ]
Vilades, E. [3 ,4 ]
Garcia-Martin, E. [3 ,4 ]
机构
[1] Univ Alcala, Dept Elect, Biomed Engn Grp, Alcala De Henares, Spain
[2] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia
[3] Miguel Servet Univ Hosp, Dept Ophthalmol, Zaragoza, Spain
[4] Univ Zaragoza, Miguel Servet Ophthalmol Innovat & Res Grp GIMSO, Aragon Inst Hlth Res IIS Aragon, Spinoff Co,Biotech Vis SLP, Zaragoza, Spain
[5] Hosp Gen Univ Gregorio Maranon, Inst Psychiat & Mental Hlth, Madrid 28007, Spain
[6] Univ Complutense, Sch Med, Madrid 28040, Spain
关键词
DISABILITY;
D O I
10.1038/s41433-024-02933-5
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Background/objectivesStudy of retinal structure based on optical coherence tomography (OCT) data can facilitate early diagnosis of relapsing-remitting multiple sclerosis (RRMS). Although artificial intelligence can provide highly reliable diagnoses, the results obtained must be explainable.Subjects/methodsThe study included 79 recently diagnosed RRMS patients and 69 age matched healthy control subjects. Thickness (Avg) and inter-eye difference (Diff) features are obtained in 4 retinal layers using the posterior pole protocol. Each layer is divided into six analysis zones. The Support Vector Machine plus Recursive Feature Elimination with Leave-One-Out Cross Validation (SVM-RFE-LOOCV) approach is used to find the subset of features that reduces dimensionality and optimises the performance of the classifier.ResultsSVM-RFE-LOOCV was used to identify OCT features with greatest capacity for early diagnosis, determining the area of the papillomacular bundle to be the most influential. A correlation was observed between loss of layer thickness and increase in functional disability. There was also greater functional deterioration in patients with greater asymmetry between left and right eyes. The classifier based on the top-ranked features obtained sensitivity = 0.86 and specificity = 0.90.ConclusionsThere was consistency between the features identified as relevant by the SVM-RFE-LOOCV approach and the retinotopic distribution of the retinal nerve fibres and the optic nerve head. This simple method contributes to implementation of an assisted diagnosis system and its accuracy exceeds that achieved with magnetic resonance imaging of the central nervous system, the current gold standard. This paper provides novel insights into RRMS affectation of the neuroretina.
引用
收藏
页码:1502 / 1508
页数:7
相关论文
共 50 条
  • [21] Diagnosis and monitoring of multiple sclerosis. The value of optical coherence tomography
    Bock, M.
    Paul, F.
    Doerr, J.
    NERVENARZT, 2013, 84 (04): : 483 - 492
  • [22] Unraveling the deep learning gearbox in optical coherence tomography image segmentation towards explainable artificial intelligence
    Peter M. Maloca
    Philipp L. Müller
    Aaron Y. Lee
    Adnan Tufail
    Konstantinos Balaskas
    Stephanie Niklaus
    Pascal Kaiser
    Susanne Suter
    Javier Zarranz-Ventura
    Catherine Egan
    Hendrik P. N. Scholl
    Tobias K. Schnitzer
    Thomas Singer
    Pascal W. Hasler
    Nora Denk
    Communications Biology, 4
  • [23] Unraveling the deep learning gearbox in optical coherence tomography image segmentation towards explainable artificial intelligence
    Maloca, Peter M.
    Mueller, Philipp L.
    Lee, Aaron Y.
    Tufail, Adnan
    Balaskas, Konstantinos
    Niklaus, Stephanie
    Kaiser, Pascal
    Suter, Susanne
    Zarranz-Ventura, Javier
    Egan, Catherine
    Scholl, Hendrik P. N.
    Schnitzer, Tobias K.
    Singer, Thomas
    Hasler, Pascal W.
    Denk, Nora
    COMMUNICATIONS BIOLOGY, 2021, 4 (01)
  • [24] Optical Coherence Tomography and Optical Coherence Tomography Angiography Findings in Multiple Sclerosis Patients
    Balikci, Ayse
    Yener, Neslihan Parmak
    Seferoglu, Meral
    NEURO-OPHTHALMOLOGY, 2022, 46 (01) : 19 - 33
  • [25] Reproducibility of optical coherence tomography in multiple sclerosis
    Cettomai, Deanna
    Pulicken, Mathew
    Gordon-Lipkin, Eliza
    Salter, Amber
    Frohman, Teresa C.
    Conger, Amy
    Zhang, Xiao
    Cutter, Gary
    Balcer, Laura J.
    Frohman, Elliot M.
    Calabresi, Peter A.
    ARCHIVES OF NEUROLOGY, 2008, 65 (09) : 1218 - 1222
  • [26] Optical coherence tomography in opticospinal multiple sclerosis
    Meneguette, Nathalie Stephanie
    Almeida, Kelly Mayane Figueiredo Ramos
    Carolina, Ana Carolina Araujo
    Alvarenga, Marcos Papais
    Vasconcelos, Claudia Cristina Ferreira
    Chrisbrandao, Anna Christiany Brandao Nascimento
    Alvarenga, Regina
    MULTIPLE SCLEROSIS JOURNAL, 2022, 28 (02) : NP26 - NP27
  • [27] Optical coherence tomography as a biomarker in multiple sclerosis
    Pulicken, Mathew J.
    Gordon-Lipkin, Eliza
    Balcer, Laura
    Cutter, Gary
    Calabresi, Peter
    NEUROLOGY, 2007, 68 (12) : A355 - A355
  • [28] The Use of Optical Coherence Tomography in Multiple Sclerosis
    Matuskova, V.
    Preiningerova, J. Lizrova
    Vyslouzilova, D.
    Michalec, M.
    Kasl, Z.
    Vlkova, E.
    CESKA A SLOVENSKA NEUROLOGIE A NEUROCHIRURGIE, 2016, 79 (01) : 33 - 40
  • [29] Optical Coherence Tomography: a window to multiple sclerosis?
    Proenca, Rita Pinto
    Cardigos, Joana Sofia
    Costa, Livio
    Vicente, Andre
    Santos, Arnaldo
    Amado, Duarte
    Ferreira, Loana
    Cunha, Joao Paulo
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (12)
  • [30] Optical Coherence Tomography in Multiple Sclerosis Patients
    Xu, Lucy T.
    Bermel, Robert A.
    Nowacki, Amy
    Kaiser, Peter K.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2014, 55 (13)