Spin Glass to Paramagnetic Transition and Triple Point in Spherical SK Model

被引:2
|
作者
Johnstone, Iain M. [1 ]
Klochkov, Yegor [2 ,3 ]
Onatski, Alexei [2 ]
Pavlyshyn, Damian [1 ,4 ]
机构
[1] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[2] Univ Cambridge, Fac Econ, Cambridge, England
[3] ByteDance, London, England
[4] Burnet Inst, Melbourne, Vic, Australia
关键词
Free energy; Spherical SK model; Tracy-Widom distribution; Likelihood ratio; FREE-ENERGY; FLUCTUATIONS; EIGENVALUES;
D O I
10.1007/s10955-024-03296-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper studies spin glass to paramagnetic transition in the Spherical Sherrington-Kirkpatrick model with ferromagnetic Curie-Weiss interaction with coupling constant J and inverse temperature beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}. The disorder of the system is represented by a general Wigner matrix. We confirm a conjecture of Baik and Lee (Stat Phys 165(2):185-224, 2016; Ann Henri Poincar & eacute; 18(6):1867-1917, 2017), that the critical window of temperatures for this transition is beta=1+bN-1/3logN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta = 1 + bN<^>{-1/3} \sqrt{\log N}$$\end{document} with b is an element of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\in \mathbb {R}$$\end{document}. The limiting distribution of the scaled free energy is Gaussian for negative b and a weighted linear combination of independent Gaussian and Tracy-Widom components for positive b. In the special case where the Wigner matrix is from the Gaussian Orthogonal or Unitary Ensemble, we describe the triple point transition between spin glass, paramagnetic, and ferromagnetic regimes in a critical window for (beta,J)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\beta , J)$$\end{document} around the triple point (1, 1): the Tracy-Widom component is replaced by the one parameter family of deformations described by Bloemendal and Vir & aacute;g [9].
引用
收藏
页数:59
相关论文
共 50 条
  • [31] Fluctuations of the overlap at low temperature in the 2-spin spherical SK model
    Landon, Benjamin
    Sosoe, Philippe
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (03): : 1426 - 1459
  • [32] PARAMAGNETIC SPIN-GLASS PHASE-TRANSITION IN DILUTE FERRIMAGNETIC OXIDES
    EFIMOVA, NN
    POPKOV, YA
    TKACHENKO, NV
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1990, 97 (04): : 1208 - 1217
  • [33] THE SPHERICAL P-SPIN INTERACTION SPIN-GLASS MODEL - THE STATICS
    CRISANTI, A
    SOMMERS, HJ
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1992, 87 (03): : 341 - 354
  • [34] THE SPHERICAL P-SPIN INTERACTION SPIN-GLASS MODEL - THE DYNAMICS
    CRISANTI, A
    HORNER, H
    SOMMERS, HJ
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1993, 92 (02): : 257 - 271
  • [35] Probing chaos in the spherical p-spin glass model
    Correale, Lorenzo
    Polkovnikov, Anatoli
    Schiro, Marco
    Silva, Alessandro
    SCIPOST PHYSICS, 2023, 15 (05):
  • [36] FULL DYNAMICAL SOLUTION FOR A SPHERICAL SPIN-GLASS MODEL
    CUGLIANDOLO, LF
    DEAN, DS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (15): : 4213 - 4234
  • [37] AN ITINERANT ELECTRON-SPIN GLASS - MAGNETIC IMPURITY CONCENTRATION-DEPENDENCE OF THE PARAMAGNETIC-SPIN GLASS-TRANSITION
    SEKI, S
    PROGRESS OF THEORETICAL PHYSICS, 1982, 67 (03): : 756 - 767
  • [38] FREE-ENERGIES OF THE SPHERICAL MODEL OF A SPIN-GLASS
    NEMOTO, K
    TAKAYAMA, H
    SOLID STATE COMMUNICATIONS, 1984, 52 (12) : 1003 - 1006
  • [39] Slow interaction dynamics in the spherical spin-glass model
    Nogueira, E
    Fontanari, JF
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 329 (3-4) : 365 - 370
  • [40] Ensemble Inequivalence in the Spherical Spin Glass Model with Nonlinear Interactions
    Murata, Yuma
    Nishimori, Hidetoshi
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2012, 81 (11)