Spin Glass to Paramagnetic Transition and Triple Point in Spherical SK Model

被引:2
|
作者
Johnstone, Iain M. [1 ]
Klochkov, Yegor [2 ,3 ]
Onatski, Alexei [2 ]
Pavlyshyn, Damian [1 ,4 ]
机构
[1] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[2] Univ Cambridge, Fac Econ, Cambridge, England
[3] ByteDance, London, England
[4] Burnet Inst, Melbourne, Vic, Australia
关键词
Free energy; Spherical SK model; Tracy-Widom distribution; Likelihood ratio; FREE-ENERGY; FLUCTUATIONS; EIGENVALUES;
D O I
10.1007/s10955-024-03296-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper studies spin glass to paramagnetic transition in the Spherical Sherrington-Kirkpatrick model with ferromagnetic Curie-Weiss interaction with coupling constant J and inverse temperature beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}. The disorder of the system is represented by a general Wigner matrix. We confirm a conjecture of Baik and Lee (Stat Phys 165(2):185-224, 2016; Ann Henri Poincar & eacute; 18(6):1867-1917, 2017), that the critical window of temperatures for this transition is beta=1+bN-1/3logN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta = 1 + bN<^>{-1/3} \sqrt{\log N}$$\end{document} with b is an element of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\in \mathbb {R}$$\end{document}. The limiting distribution of the scaled free energy is Gaussian for negative b and a weighted linear combination of independent Gaussian and Tracy-Widom components for positive b. In the special case where the Wigner matrix is from the Gaussian Orthogonal or Unitary Ensemble, we describe the triple point transition between spin glass, paramagnetic, and ferromagnetic regimes in a critical window for (beta,J)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\beta , J)$$\end{document} around the triple point (1, 1): the Tracy-Widom component is replaced by the one parameter family of deformations described by Bloemendal and Vir & aacute;g [9].
引用
收藏
页数:59
相关论文
共 50 条
  • [1] Ferromagnetic to Paramagnetic Transition in Spherical Spin Glass
    Jinho Baik
    Ji Oon Lee
    Hao Wu
    Journal of Statistical Physics, 2018, 173 : 1484 - 1522
  • [2] Ferromagnetic to Paramagnetic Transition in Spherical Spin Glass
    Baik, Jinho
    Lee, Ji Oon
    Wu, Hao
    JOURNAL OF STATISTICAL PHYSICS, 2018, 173 (05) : 1484 - 1522
  • [3] SPHERICAL MODEL OF A SPIN GLASS
    KOSTERLITZ, JM
    THOULESS, DJ
    JONES, RC
    PHYSICA B & C, 1977, 86 (JAN-M): : 859 - 860
  • [4] SPIN-GLASS-FERROMAGNETIC-PARAMAGNETIC MULTICRITICAL POINT
    SINGH, RRP
    PHYSICAL REVIEW LETTERS, 1991, 67 (07) : 899 - 902
  • [5] POSSIBILITY OF TRANSITION OF PARAMAGNETIC CRYSTALS INTO SPIN GLASS PHASE
    ATSARKIN, VA
    JETP LETTERS, 1976, 23 (06) : 290 - 293
  • [6] SPHERICAL MODEL OF A SPIN-GLASS
    KOSTERLITZ, JM
    THOULESS, DJ
    JONES, RC
    PHYSICAL REVIEW LETTERS, 1976, 36 (20) : 1217 - 1220
  • [7] ENERGY BARRIERS IN SK SPIN-GLASS MODEL
    VERTECHI, D
    VIRASORO, MA
    JOURNAL DE PHYSIQUE, 1989, 50 (17): : 2325 - 2332
  • [8] METASTABLE STATES OF THE SK SPIN-GLASS MODEL
    NEMOTO, K
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (05): : L287 - L294
  • [9] DYNAMICS OF THE SK MODEL IN THE SPIN-GLASS PHASE
    BISCARI, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (16): : 3861 - 3868
  • [10] Comment on "Spherical 2+p spin-glass model:: An analytically solvable model with a glass-to-glass transition"
    Krakoviack, V.
    PHYSICAL REVIEW B, 2007, 76 (13):