FBSED based automatic diagnosis of COVID-19 using X-ray and CT images

被引:0
|
作者
Chaudhary, Pradeep Kumar [1 ]
Pachori, Ram Bilas [1 ]
机构
[1] Department of Electrical Engineering, Indian Institute of Technology Indore, Indore,453552, India
关键词
Database systems - Computerized tomography - Convolutional neural networks - Diagnosis - Wavelet decomposition;
D O I
暂无
中图分类号
学科分类号
摘要
This work introduces the Fourier-Bessel series expansion-based decomposition (FBSED) method, which is an implementation of the wavelet packet decomposition approach in the Fourier-Bessel series expansion domain. The proposed method has been used for the diagnosis of pneumonia caused by the 2019 novel coronavirus disease (COVID-19) using chest X-ray image (CXI) and chest computer tomography image (CCTI). The FBSED method is used to decompose CXI and CCTI into sub-band images (SBIs). The SBIs are then used to train various pre-trained convolutional neural network (CNN) models separately using a transfer learning approach. The combination of SBI and CNN is termed as one channel. Deep features from each channel are fused to get a feature vector. Different classifiers are used to classify pneumonia caused by COVID-19 from other viral and bacterial pneumonia and healthy subjects with the extracted feature vector. The different combinations of channels have also been analyzed to make the process computationally efficient. For CXI and CCTI databases, the best performance has been obtained with only one and four channels, respectively. The proposed model was evaluated using 5-fold and 10-fold cross-validation processes. The average accuracy for the CXI database was 100% for both 5-fold and 10-fold cross-validation processes, and for the CCTI database, it is 97.6% for the 5-fold cross-validation process. Therefore, the proposed method may be used by radiologists to rapidly diagnose patients with COVID-19. © 2021 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [31] A preliminary analysis of AI based smartphone application for diagnosis of COVID-19 using chest X-ray images
    Rangarajan, Aravind Krishnaswamy
    Ramachandran, Hari Krishnan
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 183
  • [32] Biphasic majority voting-based comparative COVID-19 diagnosis using chest X-ray images
    Sunnetci, Kubilay Muhammed
    Alkan, Ahmet
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 216
  • [33] COVID-19 Diagnosis System Based on Chest X-ray Images Using Optimized Convolutional Neural Network
    Chen, Mu-Yen
    Chiang, Po-Ru
    ACM TRANSACTIONS ON SENSOR NETWORKS, 2023, 19 (03)
  • [34] Covid-19 Diagnosis Using a Deep Learning Ensemble Model with Chest X-Ray Images
    Türk F.
    Computer Systems Science and Engineering, 2023, 45 (02): : 1357 - 1373
  • [35] COVID-19 Diagnosis Using Chest X-ray Images via Classification and Object Detection
    Yoshitsugu, Kenji
    Nakamoto, Yukikazu
    AICCC 2021: 2021 4TH ARTIFICIAL INTELLIGENCE AND CLOUD COMPUTING CONFERENCE, 2021, : 62 - 67
  • [36] A Novel Method for COVID-19 Diagnosis Using Artificial Intelligence in Chest X-ray Images
    Almalki, Yassir Edrees
    Qayyum, Abdul
    Irfan, Muhammad
    Haider, Noman
    Glowacz, Adam
    Alshehri, Fahad Mohammed
    Alduraibi, Sharifa K.
    Alshamrani, Khalaf
    Basha, Mohammad Abd Alkhalik
    Alduraibi, Alaa
    Saeed, M. K.
    Rahman, Saifur
    HEALTHCARE, 2021, 9 (05)
  • [37] Multiscale Attention Guided Network for COVID-19 Diagnosis Using Chest X-Ray Images
    Li, Jingxiong
    Wang, Yaqi
    Wang, Shuai
    Wang, Jun
    Liu, Jun
    Jin, Qun
    Sun, Lingling
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (05) : 1336 - 1346
  • [38] Deep Learning System for COVID-19 Diagnosis Aid Using X-ray Pulmonary Images
    Civit-Masot, Javier
    Luna-Perejon, Francisco
    Dominguez Morales, Manuel
    Civit, Anton
    APPLIED SCIENCES-BASEL, 2020, 10 (13):
  • [39] Comparison of deep learning architectures for COVID-19 diagnosis using chest X-ray images
    Sampen, Denilson
    Lavarello, Roberto
    MEDICAL IMAGING 2022: IMAGE PERCEPTION, OBSERVER PERFORMANCE, AND TECHNOLOGY ASSESSMENT, 2022, 12035
  • [40] Deep CNN models for predicting COVID-19 in CT and x-ray images
    Chaddad, Ahmad
    Hassan, Lama
    Desrosiers, Christian
    JOURNAL OF MEDICAL IMAGING, 2021, 8 (S1)