KiDS-1000 cosmology: Combined second- and third-order shear statistics

被引:10
|
作者
Burger, Pierre A. [1 ]
Porth, Lucas [1 ]
Heydenreich, Sven [1 ,3 ]
Linke, Laila [1 ,2 ]
Wielders, Niek [1 ]
Schneider, Peter [1 ]
Asgari, Marika [4 ]
Castro, Tiago [5 ,6 ,7 ]
Dolag, Klaus [8 ,9 ]
Harnois-Deraps, Joachim [10 ]
Hildebrandt, Hendrik [11 ]
Kuijken, Konrad [12 ]
Martinet, Nicolas [13 ]
机构
[1] Univ Bonn, Argelander Inst Astron, Hugel 71, D-53121 Bonn, Germany
[2] Univ Innsbruck, Inst Astro & Teilchenphys, Technikerstr 25-8, A-6020 Innsbruck, Austria
[3] Univ Calif Santa Cruz, Dept Astron & Astrophys, 1156 High St, Santa Cruz, CA 95064 USA
[4] Univ Hull, EA Milne Ctr, Cottingham Rd, Kingston Upon Hull HU6 7RX, England
[5] INAF, Osservatorio Astron Trieste, Via Tiepolo 11, I-34131 Trieste, Italy
[6] INFN, Sez Trieste, I-34100 Trieste, Italy
[7] IFPU Inst Fundamental Phys Universe, Via Beirut 2, I-34151 Trieste, Italy
[8] Ludwig Maximilians Univ Munchen, Univ Sternwarte, Fak Phys, Scheinerstr 1, D-81679 Munich, Germany
[9] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany
[10] Newcastle Univ, Sch Math Stat & Phys, Newcastle Upon Tyne NE1 7RU, England
[11] Ruhr Univ Bochum, Astron Inst AIRUB, Fac Phys & Astron, German Ctr Cosmol Lensing, D-44780 Bochum, Germany
[12] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands
[13] Aix Marseille Univ, CNRS, CNES, LAM, Marseille, France
基金
奥地利科学基金会; 欧洲研究理事会;
关键词
gravitation; gravitational lensing: weak; methods: analytical; methods: numerical; cosmological parameters; large-scale structure of Universe; 3-POINT CORRELATION-FUNCTION; NONLINEAR CLUSTER INVERSION; WEAK-LENSING SURVEYS; KILO-DEGREE SURVEY; COSMIC SHEAR; INTRINSIC ALIGNMENTS; POWER SPECTRUM; GRAVITATIONAL DISTORTIONS; NON-GAUSSIANITY; DATA RELEASE;
D O I
10.1051/0004-6361/202347986
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Aims. In this work, we perform the first cosmological parameter analysis of the fourth release of Kilo Degree Survey (KiDS-1000) data with second- and third-order shear statistics. This paper builds on a series of studies aimed at describing the roadmap to third-order shear statistics. Methods. We derived and tested a combined model of the second-order shear statistic, namely, the COSEBIs and the third-order aperture mass statistics < M-ap(3)> in a tomographic set-up. We validated our pipeline with N-body mock simulations of the KiDS-1000 data release. To model the second- and third-order statistics, we used the latest version of HMCODE2020 for the power spectrum and BIHALOFIT for the bispectrum. Furthermore, we used an analytic description to model intrinsic alignments and hydro-dynamical simulations to model the e ffect of baryonic feedback processes. Lastly, we decreased the dimension of the data vector significantly by considering only equal smoothing radii for the < M-ap(3)> part of the data vector. This makes it possible to carry out a data analysis of the KiDS-1000 data release using a combined analysis of COSEBIs and third-order shear statistics. Results. We first validated the accuracy of our modelling by analysing a noise-free mock data vector, assuming the KiDS-1000 error budget, finding a shift in the maximum of the posterior distribution of the matter density parameter, Delta Omega(m) < 0.02 sigma(Omega m), and of the structure growth parameter, Delta S-8 < 0.05 sigma(S8). Lastly, we performed the first KiDS-1000 cosmological analysis using a combined analysis of second- and third-order shear statistics, where we constrained Omega(m) = 0.248(-0.055)(+0.062) and S-8 = sigma(8) root Omega(m)/0.3 = 0.772 +/- 0.022. The geometric average on the errors of Omega(m) and S-8 of the combined statistics decreases, compared to the second-order statistic, by a factor of 2.2.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] SECOND- AND THIRD-ORDER ELASTIC CONSTANTS OF AMORPHOUS ARSENIC.
    Brassington, M.P.
    Lambson, W.A.
    Miller, A.J.
    Saunders, G.A.
    Yogurtcu, Y.K.
    Philosophical Magazine B: Physics of Condensed Matter; Electronic, Optical and Magnetic Properties, 1980, 42 (01): : 127 - 148
  • [32] Nonlinear phase shift and detuning by second- and third-order nonlinearities
    Univ of Tokyo, Tokyo, Japan
    Japanese Journal of Applied Physics, Part 2: Letters, 1997, 36 (10 A):
  • [33] Nonlinear phase shift and detuning by second- and third-order nonlinearities
    Zhang, L
    Shirakawa, A
    Morita, S
    Kobayashi, T
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 1997, 36 (10A): : L1294 - L1296
  • [34] Bistable prism coupler with both second- and third-order nonlinearities
    Enoch, S
    Akhouayri, H
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1997, 14 (03) : 588 - 592
  • [35] Second- and third-order multivariate calibration:: Data, algorithms and applications
    Escandar, Graciela M.
    Faber, Nicholaas M.
    Goicoechea, Hector C.
    Munoz de la Pena, Arsenio
    Olivieri, Alejandro C.
    Poppi, Ronei J.
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2007, 26 (07) : 752 - 765
  • [36] Second- and third-order transverse spherical aberration of an aspheric mirror
    Il'inskii, RE
    JOURNAL OF OPTICAL TECHNOLOGY, 1998, 65 (02) : 143 - 144
  • [37] Third-order aperture mass statistics of cosmic shear
    Kilbinger, M.
    Schneider, P.
    IMPACT OF GRAVITIONAL LENSING ON COSMOLOGY, 2005, 225 : 81 - 86
  • [38] Simple numerical methods of second- and third-order convergence for solving a fully third-order nonlinear boundary value problem
    Dang, Quang A.
    Quang Long Dang
    NUMERICAL ALGORITHMS, 2021, 87 (04) : 1479 - 1499
  • [39] Enhancement of second- and third-order nonlinear optical susceptibilities in magnetized semiconductors
    Singh, M.
    Aghamkar, P.
    Duhan, S.
    CHINESE PHYSICS LETTERS, 2008, 25 (09) : 3276 - 3279
  • [40] Simple numerical methods of second- and third-order convergence for solving a fully third-order nonlinear boundary value problem
    Quang A Dang
    Quang Long Dang
    Numerical Algorithms, 2021, 87 : 1479 - 1499