DICE: Data-Efficient Clinical Event Extraction with Generative Models

被引:0
|
作者
Ma, Mingyu Derek [1 ]
Taylor, Alexander K. [1 ]
Wang, Wei [1 ]
Peng, Nanyun [1 ]
机构
[1] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90024 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Event extraction for the clinical domain is an under-explored research area. The lack of training data along with the high volume of domain-specific terminologies with vague entity boundaries makes the task especially challenging. In this paper, we introduce DICE, a robust and data-efficient generative model for clinical event extraction. DICE frames event extraction as a conditional generation problem and introduces a contrastive learning objective to accurately decide the boundaries of biomedical mentions. DICE also trains an auxiliary mention identification task jointly with event extraction tasks to better identify entity mention boundaries, and further introduces special markers to incorporate identified entity mentions as trigger and argument candidates for their respective tasks. To benchmark clinical event extraction, we compose MACCROBAT-EE, the first clinical event extraction dataset with argument annotation, based on an existing clinical information extraction dataset, MACCROBAT (Caufield et al., 2019). Our experiments demonstrate state-of-the-art performances of DICE for clinical and news domain event extraction, especially under low data settings.
引用
收藏
页码:15898 / 15917
页数:20
相关论文
共 50 条
  • [31] Data-Efficient Reinforcement Learning for Malaria Control
    Zou, Lixin
    [J]. PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 507 - 513
  • [32] Data-Efficient Inference of Nonlinear Oscillator Networks
    Singhal, Bharat
    Vu, Minh
    Zeng, Shen
    Li, Jr-Shin
    [J]. IFAC PAPERSONLINE, 2023, 56 (02): : 10089 - 10094
  • [33] Data-efficient performance learning for configurable systems
    Jianmei Guo
    Dingyu Yang
    Norbert Siegmund
    Sven Apel
    Atrisha Sarkar
    Pavel Valov
    Krzysztof Czarnecki
    Andrzej Wasowski
    Huiqun Yu
    [J]. Empirical Software Engineering, 2018, 23 : 1826 - 1867
  • [34] Pretraining Representations for Data-Efficient Reinforcement Learning
    Schwarzer, Max
    Rajkumar, Nitarshan
    Noukhovitch, Michael
    Anand, Ankesh
    Charlin, Laurent
    Hjelm, Devon
    Bachman, Philip
    Courville, Aaron
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [35] Data-Efficient Domain Randomization With Bayesian Optimization
    Muratore, Fabio
    Eilers, Christian
    Gienger, Michael
    Peters, Jan
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02) : 911 - 918
  • [36] Data-efficient performance learning for configurable systems
    Guo, Jianmei
    Yang, Dingyu
    Siegmund, Norbert
    Apel, Sven
    Sarkar, Atrisha
    Valov, Pavel
    Czarnecki, Krzysztof
    Wasowski, Andrzej
    Yu, Huiqun
    [J]. EMPIRICAL SOFTWARE ENGINEERING, 2018, 23 (03) : 1826 - 1867
  • [37] Decentralized Data-Efficient Quickest Change Detection
    Banerjee, Taposh
    Veeravalli, Venugopal V.
    Tartakovsky, Alexander
    [J]. 2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 2587 - +
  • [38] Data-Efficient Augmentation for Training Neural Networks
    Liu, Tian Yu
    Mirzasoleiman, Baharan
    [J]. Advances in Neural Information Processing Systems, 2022, 35
  • [39] Data-Efficient Framework for Personalized Physiotherapy Feedback
    Lao, Bryan
    Tamei, Tomoya
    Ikeda, Kazushi
    [J]. FRONTIERS IN COMPUTER SCIENCE, 2020, 2
  • [40] Data-Efficient and Interpretable Tabular Anomaly Detection
    Chang, Chun-Hao
    Yoon, Jinsung
    Arik, Sercan O.
    Udell, Madeleine
    Pfister, Tomas
    [J]. PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 190 - 201