Editorial: Reviews in recommender systems: 2022

被引:1
|
作者
Kowald, Dominik [1 ,2 ]
Yang, Deqing [3 ]
Lacic, Emanuel [4 ]
机构
[1] Know Ctr GmbH, Graz, Austria
[2] Graz Univ Technol, Inst Interact Syst & Data Sci, Graz, Austria
[3] Fudan Univ, Sch Data Sci, Shanghai, Peoples R China
[4] Infobip, Zagreb, Croatia
来源
FRONTIERS IN BIG DATA | 2024年 / 7卷
关键词
recommender systems; review; fairness; privacy; collaborative filtering;
D O I
10.3389/fdata.2024.1384460
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页数:3
相关论文
共 50 条
  • [31] When do Recommender Systems Work the Best? The Moderating Effects of Product Attributes and Consumer Reviews on Recommender Performance
    Lee, Dokyun
    Hosanagar, Kartik
    PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16), 2016, : 85 - 97
  • [32] Editorial: Reviews in cellular neurophysiology 2022: neurophysiological mechanisms in the aging brain
    Plotkin, Joshua L.
    Graves, Steven M.
    Riessland, Markus
    FRONTIERS IN CELLULAR NEUROSCIENCE, 2024, 18
  • [33] Augmenting service recommender systems by incorporating contextual opinions from user reviews
    Guanliang Chen
    Li Chen
    User Modeling and User-Adapted Interaction, 2015, 25 : 295 - 329
  • [34] A Comparative Study of Feature Extraction Methods from User Reviews for Recommender Systems
    Bhagat, Pradnya
    Pawar, Jyoti D.
    PROCEEDINGS OF THE ACM INDIA JOINT INTERNATIONAL CONFERENCE ON DATA SCIENCE AND MANAGEMENT OF DATA (CODS-COMAD'18), 2018, : 325 - 328
  • [35] Collaborative Recommender Systems based on User-Generated Reviews: A Concise Survey
    Srifi, Mehdi
    Hammou, Badr Ait
    Mouline, Salma
    Lahcen, Ayoub Ait
    2018 INTERNATIONAL SYMPOSIUM ON ADVANCED ELECTRICAL AND COMMUNICATION TECHNOLOGIES (ISAECT), 2018,
  • [36] Neural text similarity of user reviews for improving collaborative filtering recommender systems
    Ghasemi, Negin
    Momtazi, Saeedeh
    ELECTRONIC COMMERCE RESEARCH AND APPLICATIONS, 2021, 45 (45)
  • [37] Augmenting service recommender systems by incorporating contextual opinions from user reviews
    Chen, Guanliang
    Chen, Li
    USER MODELING AND USER-ADAPTED INTERACTION, 2015, 25 (03) : 295 - 329
  • [38] MORS 2022: The Second Workshop on Multi-Objective Recommender Systems
    Abdollahpouri, Himan
    Sahebi, Shaghayegh
    Elahi, Mehdi
    Mansoury, Masoud
    Loni, Babak
    Nazari, Zahra
    Dimakopoulou, Maria
    PROCEEDINGS OF THE 16TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2022, 2022, : 658 - 660
  • [39] Second Workshop on Recommender Systems for Human Resources (RecSys in HR 2022)
    Bogers, Toine
    Graus, David
    Kaya, Mesut
    Gutierrez, Francisco
    Mesbah, Sepideh
    Johnson, Chris
    PROCEEDINGS OF THE 16TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2022, 2022, : 671 - 674
  • [40] Fourth Workshop on Recommender Systems in Fashion and Retail-fashionXrecsys2022
    Pampin, Humberto Jesus Corona
    Shirvany, Reza
    PROCEEDINGS OF THE 16TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2022, 2022, : 680 - 683