Comparative Models of Price Estimation Using Multiple Linear Regression and Random Forest Methods

被引:0
|
作者
Crosss Sihombing, Denny Jean [1 ]
Othernima, Desi C. [1 ]
Manurung, Jonson [2 ]
Sagala, Jijon Raphita [3 ]
机构
[1] Atma Jaya Catholic University of Indonesia, Faculty of Engineering, Dept. Information System, Jakarta, Indonesia
[2] STMIK Pelita Nusantara, Dept. Software Engineering, Medan, Indonesia
[3] STMIK Pelita Nusantara, Dept. Information Technology, Medan, Indonesia
关键词
Engineering Village;
D O I
暂无
中图分类号
学科分类号
摘要
Accuracy rate - Comparative modeling - House's prices - Jakarta - Machine-learning - Multiple linear regressions - Property - Random forest methods - Random forests - Regression forests
引用
收藏
页码:478 / 483
相关论文
共 50 条
  • [21] A comparative study on estimation methods to deal with the endogeneity in linear random-intercept models with an extension
    Rikhtehgaran, Reyhaneh
    Kazemi, Iraj
    Verbeke, Geert
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (01) : 171 - 186
  • [22] Unconstrained Gaze Estimation Using Random Forest Regression Voting
    Kacete, Amine
    Seguier, Renaud
    Collobert, Michel
    Royan, Jerome
    [J]. COMPUTER VISION - ACCV 2016, PT III, 2017, 10113 : 419 - 432
  • [23] What drives intercity venture capital investment? A comparative analysis between multiple linear regression and random forest
    Du, Delin
    Wang, Jiaoe
    Li, Jianjun
    [J]. HUMANITIES & SOCIAL SCIENCES COMMUNICATIONS, 2024, 11 (01):
  • [24] Methods of Estimation in Multiple Linear Regression: Application to Clinical Data
    Coelho-Barros, Emilio Augusto
    Simoes, Priscila Angelotti
    Achcar, Jorge Alberito
    Martinez, Edson Zangiacomi
    Shimano, Antonio Carlos
    [J]. REVISTA COLOMBIANA DE ESTADISTICA, 2008, 31 (01): : 111 - 129
  • [25] . Estimation of thermal comfort indexes for production animals using multiple linear regression models
    Rodrigues Sarnighausen, Valeria Cristina
    [J]. JOURNAL OF ANIMAL BEHAVIOUR AND BIOMETEOROLOGY, 2019, 7 (02): : 73 - 77
  • [26] A new approach in adsorption modeling using random forest regression, Bayesian multiple linear regression, and multiple linear regression: 2,4-D adsorption by a green adsorbent
    Beigzadeh, Bahareh
    Bahrami, Mehdi
    Amiri, Mohammad Javad
    Mahmoudi, Mohammad Reza
    [J]. WATER SCIENCE AND TECHNOLOGY, 2020, 82 (08) : 1586 - 1602
  • [27] Daily Evapotranspiration Mapping Using Regression Random Forest Models
    Gonzalo-Martin, Consuelo
    Lillo-Saavedra, Mario
    Garcia-Pedrero, Angel
    Lagos, Octavio
    Menasalvas, Ernestina
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (12) : 5359 - 5368
  • [28] Methods for the Analysis of Explanatory Linear Regression Models with Missing Data Not at Random
    José Blas Navarro Pastor
    [J]. Quality and Quantity, 2003, 37 (4) : 363 - 376
  • [29] Methods for the analysis of explanatory linear regression models with missing data not at random
    Pastor, JBN
    [J]. QUALITY & QUANTITY, 2003, 37 (04) : 363 - 376
  • [30] Modeling the response of negative air ions to environmental factors using multiple linear regression and random forest
    Shi, Guang-Yao
    Zhou, Yu
    Sang, Yu-Qiang
    Huang, Hui
    Zhang, Jin-Song
    Meng, Ping
    Cai, Lu-Lu
    [J]. ECOLOGICAL INFORMATICS, 2021, 66