Federated Deep Learning for Intrusion Detection in IoT Networks

被引:3
|
作者
Belarbi, Othmane [1 ]
Spyridopoulos, Theodoros [1 ]
Anthi, Eirini [1 ]
Mavromatis, Ioannis [2 ]
Carnelli, Pietro [2 ]
Khan, Aftab [2 ]
机构
[1] Cardiff Univ, Cardiff, Wales
[2] Toshiba Europe Ltd, BRIL, Bristol, Avon, England
关键词
Federated Learning; Intrusion Detection System; Internet of Things; Deep Learning; Deep Belief Networks;
D O I
10.1109/GLOBECOM54140.2023.10437860
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The vast increase of Internet of Things (IoT) technologies and the ever-evolving attack vectors have increased cyber-security risks dramatically. A common approach to implementing AI-based Intrusion Detection Systems (IDSs) in distributed IoT systems is in a centralised manner. However, this approach may violate data privacy and prohibit IDS scalability. Therefore, intrusion detection solutions in IoT ecosystems need to move towards a decentralised direction. Federated Learning (FL) has attracted significant interest in recent years due to its ability to perform collaborative learning while preserving data confidentiality and locality. Nevertheless, most FL-based IDS for IoT systems are designed under unrealistic data distribution conditions. To that end, we design an experiment representative of the real-world and evaluate the performance of an FL-based IDS. For our experiments, we rely on TON-IoT, a realistic IoT network traffic dataset, associating each IP address with a single FL client. Additionally, we explore pre-training and investigate various aggregation methods to mitigate the impact of data heterogeneity. Lastly, we benchmark our approach against a centralised solution. The comparison shows that the heterogeneous nature of the data has a considerable negative impact on the model's performance when trained in a distributed manner. However, in the case of a pre-trained initial global FL model, we demonstrate a performance improvement of over 20% (F1-score) compared to a randomly initiated global model.
引用
收藏
页码:237 / 242
页数:6
相关论文
共 50 条
  • [41] Explainable Federated Learning for Botnet Detection in IoT Networks
    Kalakoti, Rajesh
    Bahsi, Hayretdin
    Nomm, Sven
    2024 IEEE INTERNATIONAL CONFERENCE ON CYBER SECURITY AND RESILIENCE, CSR, 2024, : 22 - 29
  • [42] Exploring Lightweight Deep Learning Techniques for Intrusion Detection Systems in IoT Networks: A Survey
    Hassan, Hind Ali abdul
    Zolfy, Mina
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (04) : 1944 - 1958
  • [43] Adaptive Deep Ensemble Learning for Robust Network Intrusion Detection in Industrial IoT Networks
    Muthu, A. Essaki
    Balamurugan, S.
    Prasad, Shalini
    Rani, A. Pitchi
    Krishnan, R. Santhana
    Rajkumar, G. Vinoth
    2024 SECOND INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTING AND INFORMATICS, ICICI 2024, 2024, : 490 - 496
  • [44] Hybrid intrusion detection system for wireless IoT networks using deep learning algorithm
    Simon, Judy
    Kapileswar, N.
    Polasi, Phani Kumar
    Elaveini, M. Aarthi
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 102
  • [45] Explainable artificial intelligence for intrusion detection in IoT networks: A deep learning based approach
    Sharma, Bhawana
    Sharma, Lokesh
    Lal, Chhagan
    Roy, Satyabrata
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [46] LBDMIDS: LSTM Based Deep Learning Model for Intrusion Detection Systems for IoT Networks
    Saurabh, Kumar
    Sood, Saksham
    Kumar, P. Aditya
    Singh, Uphar
    Vyas, Ranjana
    Vyas, O. P.
    Khondoker, Rahamatullah
    2022 IEEE WORLD AI IOT CONGRESS (AIIOT), 2022, : 753 - 759
  • [47] Anomaly-Based Intrusion Detection Model Using Deep Learning for IoT Networks
    Alsoufi, Muaadh A.
    Siraj, Maheyzah Md
    Ghaleb, Fuad A.
    Al-Razgan, Muna
    Al-Asaly, Mahfoudh Saeed
    Alfakih, Taha
    Saeed, Faisal
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 141 (01): : 823 - 845
  • [48] Deep Learning Approach for SDN-Enabled Intrusion Detection System in IoT Networks
    Chaganti, Rajasekhar
    Suliman, Wael
    Ravi, Vinayakumar
    Dua, Amit
    INFORMATION, 2023, 14 (01)
  • [49] An Enhanced Intrusion Detection System for IoT Networks Based on Deep Learning and Knowledge Graph
    Yang, Xiuzhang
    Peng, Guojun
    Zhang, Dongni
    Lv, Yangqi
    SECURITY AND COMMUNICATION NETWORKS, 2022, 2022
  • [50] Hybrid Deep Learning-Based Intrusion Detection System for RPL IoT Networks
    Al Sawafi, Yahya
    Touzene, Abderezak
    Hedjam, Rachid
    JOURNAL OF SENSOR AND ACTUATOR NETWORKS, 2023, 12 (02)