Federated Deep Learning for Intrusion Detection in IoT Networks

被引:1
|
作者
Belarbi, Othmane [1 ]
Spyridopoulos, Theodoros [1 ]
Anthi, Eirini [1 ]
Mavromatis, Ioannis [2 ]
Carnelli, Pietro [2 ]
Khan, Aftab [2 ]
机构
[1] Cardiff Univ, Cardiff, Wales
[2] Toshiba Europe Ltd, BRIL, Bristol, Avon, England
关键词
Federated Learning; Intrusion Detection System; Internet of Things; Deep Learning; Deep Belief Networks;
D O I
10.1109/GLOBECOM54140.2023.10437860
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The vast increase of Internet of Things (IoT) technologies and the ever-evolving attack vectors have increased cyber-security risks dramatically. A common approach to implementing AI-based Intrusion Detection Systems (IDSs) in distributed IoT systems is in a centralised manner. However, this approach may violate data privacy and prohibit IDS scalability. Therefore, intrusion detection solutions in IoT ecosystems need to move towards a decentralised direction. Federated Learning (FL) has attracted significant interest in recent years due to its ability to perform collaborative learning while preserving data confidentiality and locality. Nevertheless, most FL-based IDS for IoT systems are designed under unrealistic data distribution conditions. To that end, we design an experiment representative of the real-world and evaluate the performance of an FL-based IDS. For our experiments, we rely on TON-IoT, a realistic IoT network traffic dataset, associating each IP address with a single FL client. Additionally, we explore pre-training and investigate various aggregation methods to mitigate the impact of data heterogeneity. Lastly, we benchmark our approach against a centralised solution. The comparison shows that the heterogeneous nature of the data has a considerable negative impact on the model's performance when trained in a distributed manner. However, in the case of a pre-trained initial global FL model, we demonstrate a performance improvement of over 20% (F1-score) compared to a randomly initiated global model.
引用
收藏
页码:237 / 242
页数:6
相关论文
共 50 条
  • [1] Enhancing Intrusion Detection in IoT Networks Through Federated Learning
    Dhakal, Raju
    Raza, Waleed
    Tummala, Vijayanth
    Niure Kandel, Laxima
    [J]. IEEE Access, 2024, 12 : 167168 - 167182
  • [2] Federated Learning for IoT Intrusion Detection
    Lazzarini, Riccardo
    Tianfield, Huaglory
    Charissis, Vassilis
    [J]. AI, 2023, 4 (03) : 509 - 530
  • [3] Secure and Efficient Federated Learning for Robust Intrusion Detection in IoT Networks
    Abou El Houda, Zakaria
    Moudoud, Hajar
    Khoukhi, Lyes
    [J]. IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 2668 - 2673
  • [4] Federated Deep Learning for Collaborative Intrusion Detection in Heterogeneous Networks
    Popoola, Segun, I
    Qui, Guan
    Adebisi, Bamidele
    Hammoudeh, Mohammad
    Gacanin, Haris
    [J]. 2021 IEEE 94TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-FALL), 2021,
  • [5] Traditional vs Federated Learning with Deep Autoencoders: a Study in IoT Intrusion Detection
    Catillo, Marta
    Pecchia, Antonio
    Villano, Umberto
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING TECHNOLOGY AND SCIENCE, CLOUDCOM 2023, 2023, : 208 - 215
  • [6] Improving Privacy in Federated Learning-Based Intrusion Detection for IoT Networks
    Syne, Lamine
    Caballero-Gil, Pino
    Hernandez-Goya, Candelaria
    [J]. 39TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2024, 2024, : 580 - 582
  • [7] Intrusion Detection in IoT Networks Using Deep Learning Algorithm
    Susilo, Bambang
    Sari, Riri Fitri
    [J]. INFORMATION, 2020, 11 (05)
  • [8] A Hybrid Deep Learning Approach for Intrusion Detection in IoT Networks
    Emec, Murat
    Ozcanhan, Mehmet Hilal
    [J]. ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING, 2022, 22 (01) : 3 - 12
  • [9] Deep Learning-based Intrusion Detection for IoT Networks
    Ge, Mengmeng
    Fu, Xiping
    Syed, Naeem
    Baig, Zubair
    Teo, Gideon
    Robles-Kelly, Antonio
    [J]. 2019 IEEE 24TH PACIFIC RIM INTERNATIONAL SYMPOSIUM ON DEPENDABLE COMPUTING (PRDC 2019), 2019, : 256 - 265
  • [10] Federated Deep Learning-based Intrusion Detection Approach for Enhancing Privacy in Fog-IoT Networks
    Radjaa, Bensaid
    Nabila, Labraoui
    Salameh, Haythem Bany
    [J]. 2023 10TH INTERNATIONAL CONFERENCE ON INTERNET OF THINGS: SYSTEMS, MANAGEMENT AND SECURITY, IOTSMS, 2023, : 156 - 160