Locally Stationary Wavelet Analysis of Nonstationary Turbulent Fluxes

被引:0
|
作者
Arias-Arana, D. [1 ,4 ]
Fochesatto, G. J. [2 ]
Jimenez, R. [3 ]
Ojeda, C. [1 ]
机构
[1] Univ Valle Cali, Fac Engn, Sch Stat, Cali 760032, Colombia
[2] Univ Alaska Fairbanks, Coll Nat Sci & Math, Dept Atmospher Sci, 1930 Yukon Dr, Fairbanks, AK 99775 USA
[3] Univ Nacl Colombia, Dept Chem & Environm Engn, Bogota 111321, Colombia
[4] Univ Valle, Ctr Bioinformat & Photon CIBioFi, Cali 760032, Valle Del Cauca, Colombia
基金
美国国家科学基金会;
关键词
Land-surface atmosphere interactions; Surface turbulent fluxes; Multivariate locally stationary wavelet process; Nonstationary time series; Spectral gap; ATMOSPHERIC BOUNDARY-LAYER; COHERENT MOTIONS; FOREST CANOPY; TRANSFORMS; SCALES; GAP;
D O I
10.1007/s10546-024-00872-y
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
We propose the multivariate locally stationary wavelet (mvLSW) process to analyze surface turbulent fluxes in nonstationary atmospheric conditions. Using theoretical spectral characteristics, we generated synthetic data representing stationary and nonstationary turbulence time series. This data enables us to explore the impact of mesoscale atmospheric flows on the stationary microscale turbulence field and detect the spectral gap in the time-varying cospectra. Applying this approach to experimental data collected in Fairbanks, Alaska and Bogota, Colombia, we demonstrated the ability to detect cospectral gaps and compute bandwidth-limited turbulent fluxes arising from stationary components of the atmospheric flow. These findings underscore the importance of considering scale-dependent atmospheric forcing when comparing model and experimental data.
引用
收藏
页数:20
相关论文
共 50 条