Rydberg-atom-based single-photon detection for haloscope axion searches

被引:1
|
作者
Graham, Eleanor [1 ,2 ]
Ghosh, Sumita [2 ,3 ]
Zhu, Yuqi [1 ,2 ]
Bai, Xiran [1 ,2 ]
Cahn, Sidney B. [1 ,2 ]
Durcan, Elsa [1 ,2 ]
Jewell, Michael J. [1 ,2 ]
Speller, Danielle H. [4 ]
Zacarias, Sabrina M. [1 ,2 ]
Zhou, Laura T. [1 ,2 ]
Maruyama, Reina H. [1 ,2 ]
机构
[1] Yale Univ, Dept Phys, New Haven, CT 06520 USA
[2] Yale Univ, Dept Phys, Wright Lab, New Haven, CT 06520 USA
[3] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA
[4] Johns Hopkins Univ, Dept Phys & Astron, 3400 North Charles St, Baltimore, MD 21218 USA
关键词
SELECTIVE FIELD-IONIZATION; CP CONSERVATION; LOW-TEMPERATURE; SUPER-RADIANCE; CAVITY; INVARIANCE; STATES; NOISE;
D O I
10.1103/PhysRevD.109.032009
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We propose a Rydberg-atom-based single-photon detector for signal readout in dark matter haloscope experiments between 40 p.eV and 200 p.eV (10 GHz and 50 GHz). At these frequencies, standard haloscope readout using linear amplifiers is limited by quantum measurement noise, which can be avoided by using a single-photon detector. Our single-photon detection scheme can offer scan rate enhancements up to a factor of 104 over traditional linear amplifier readout, and is compatible with many different haloscope cavities. We identify multiple haloscope designs that could use our Rydberg-atom-based single-photon detector to search for QCD axions with masses above 40 p.eV (10 GHz), currently a minimally explored parameter space.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Rydberg-atom-based radio-frequency sensors: amplitude-regime sensing
    Schmidt, Matthias
    Bohaichuk, Stephanie
    Venu, Vijin
    Christaller, Florian
    Liu, Chang
    Ripka, Fabian
    Kuebler, Harald
    Haffer, James P.
    OPTICS EXPRESS, 2024, 32 (16): : 27768 - 27791
  • [42] Single-photon transistor based on cavity electromagnetically induced transparency with Rydberg atomic ensemble
    Y. M. Hao
    G. W. Lin
    X. M. Lin
    Y. P. Niu
    S. Q. Gong
    Scientific Reports, 9
  • [43] A room-temperature single-photon source based on strongly interacting Rydberg atoms
    Ripka, Fabian
    Kuebler, Harald
    Loew, Robert
    Pfau, Tilman
    SCIENCE, 2018, 362 (6413) : 446 - 448
  • [44] Single-photon transistor based on cavity electromagnetically induced transparency with Rydberg atomic ensemble
    Hao, Y. M.
    Lin, G. W.
    Lin, X. M.
    Niu, Y. P.
    Gong, S. Q.
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [45] Single-atom motion in a single-photon light field
    Pinkse, P.W.H.
    Fischer, T.
    Maunz, P.
    Rempe, G.
    Conference on Quantum Electronics and Laser Science (QELS) - Technical Digest Series, 2000,
  • [46] Telecom-heralded single-photon absorption by a single atom
    Lenhard, Andreas
    Bock, Matthias
    Becher, Christoph
    Kucera, Stephan
    Brito, Jose
    Eich, Pascal
    Mueller, Philipp
    Eschner, Juergen
    PHYSICAL REVIEW A, 2015, 92 (06):
  • [47] Double-heralded single-photon absorption by a single atom
    Brito, Jose
    Kucera, Stephan
    Eich, Pascal
    Schug, Michael
    Kurz, Christoph
    Mueller, Philipp
    Huwer, Jan
    Eschner, Juergen
    2014 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2014,
  • [48] Search for dark photons using a multilayer dielectric haloscope equipped with a single-photon avalanche diode
    Manenti, Laura
    Mishra, Umang
    Bruno, Gianmarco
    Roberts, Henry
    Oikonomou, Panos
    Pasricha, Renu
    Sarnoff, Isaac
    Weston, James
    Arneodo, Francesco
    Di Giovanni, Adriano
    Millar, Alexander John
    Mora, Knut Dundas
    PHYSICAL REVIEW D, 2022, 105 (05)
  • [49] Interaction of a single-photon wave packet with an excited atom
    Elyutin, P. V.
    PHYSICAL REVIEW A, 2012, 85 (03):
  • [50] Efficient single-photon absorption by a trapped moving atom
    Trautmann, N.
    Alber, G.
    Leuchs, G.
    PHYSICAL REVIEW A, 2016, 94 (03)