Mechanical Behavior Based on Aggregates Microstructure of Ultra-high Performance Concrete

被引:0
|
作者
Ding, Qingjun [1 ,2 ]
Zhou, Changsheng [1 ]
Zhang, Gaozhan [2 ]
Guo, Hong [3 ]
Li, Yang [2 ]
Zhang, Yongyuan [1 ]
Guo, Kaizheng [1 ]
机构
[1] Wuhan Univ Technol, Sch Mat Sci & Engn, Wuhan 430070, Peoples R China
[2] Anhui Jianzhu Univ, Sch Mat Sci & Chem Engn, Adv Bldg Mat Key Lab Anhui Prov, Hefei 230601, Peoples R China
[3] China Railway 17th Bur Grp Co Ltd, Taiyuan 030006, Peoples R China
基金
中国国家自然科学基金;
关键词
ultra-high performance concrete; mechanical properties; fine aggregates; microstructure; nanoindentation; FIBER-REINFORCED CONCRETE; REACTIVE POWDER CONCRETE; STRENGTH; SIZE; UPV;
D O I
10.1007/s11595-024-2925-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We developed ultra-high performance concrete (UHPC) incorporating mullite sand and brown corundum sand (BCS), and the quartz sand UHPC was utilized to prepare for comparison. The properties of compressive strength, elastic modulus, ultrasonic pulse velocity, flexural strength, and toughness were investigated. Scanning electron microscopy and nanoindentation were also conducted to reveal the underlying mechanisms affecting macroscopic performance. Due to the superior interface bonding properties between mullite sand and matrix, the compressive strength and flexural toughness of UHPC have been significantly improved. Mullite sand and BCS aggregates have higher stiffness than quartz sand, contributing to the excellent elastic modulus exhibited by UHPC. The stiffness and volume of aggregates have a more significant impact on the elastic modulus of UHPC than interface performance, and the latter contributes more to the strength of UHPC. This study will provide a reference for developing UHPC with superior elastic modulus for structural engineering.
引用
收藏
页码:673 / 681
页数:9
相关论文
共 50 条
  • [21] Adding hydrated lime for improving microstructure and mechanical properties of mortar for ultra-high performance concrete
    Zhang, Gui
    Peng, Gai-Fei
    Zuo, Xue-Yu
    Niu, Xu-Jing
    Ding, Hong
    CEMENT AND CONCRETE RESEARCH, 2023, 167
  • [22] Effect of steam curing system on the early mechanical property and microstructure of ultra-high performance concrete
    Wu J.
    Guo L.
    Cao Y.
    Qin Y.
    Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2022, 52 (04): : 744 - 752
  • [23] THE MECHANICAL PROPERTIES AND MICROSTRUCTURE OF ULTRA-HIGH PERFORMANCE CONCRETE CONTAINING VARIOUS SUPPLEMENTARY CEMENTITIOUS MATERIALS
    Zhang, Jisong
    Zhao, Yinghua
    1ST INTERNATIONAL CONFERENCE ON UHPC MATERIALS AND STRUCTURES, 2016, 105 : 197 - 210
  • [24] Mechanical properties and microstructure of ultra-high strength concrete with lightweight aggregate
    Meng, Lingqi
    Zhang, Chunxiao
    Wei, Jiuqi
    Li, Lei
    Liu, Jingbiao
    Wang, Shihe
    Ding, Yahong
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2023, 18
  • [25] Ultra-high performance concrete
    Zadeh, D. B.
    Bahari, A.
    Tirandaz, F.
    EXCELLENCE IN CONCRETE CONSTRUCTION THROUGH INNOVATION, 2009, : 275 - 278
  • [26] Experimental study on thermal performance of ultra-high performance concrete with coarse aggregates at high temperature
    Xue, Congcong
    Yu, Min
    Xu, Haoming
    Xu, Lihua
    Saafi, Mohamed
    Ye, Jianqiao
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 314
  • [27] Effect of Casting Position on Mechanical Performance of Ultra-High Performance Concrete
    Zhao, Sujing
    Bo, Yiheng
    MATERIALS, 2022, 15 (02)
  • [28] The effect of curing regimes on the mechanical properties, nano-mechanical properties and microstructure of ultra-high performance concrete
    Shen, Peiliang
    Lu, Linnu
    He, Yongjia
    Wang, Fazhou
    Hu, Shuguang
    CEMENT AND CONCRETE RESEARCH, 2019, 118 : 1 - 13
  • [29] Mechanical Properties of Ultra-High Performance Concrete (UHPC) and Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC) with Recycled Sand
    Choi, Donguk
    Hong, Kyungchan
    Ochirbud, Munkhtuvshin
    Meiramov, Didar
    Sukontaskuul, Piti
    INTERNATIONAL JOURNAL OF CONCRETE STRUCTURES AND MATERIALS, 2023, 17 (01)
  • [30] Mechanical Properties of Ultra-High Performance Concrete (UHPC) and Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC) with Recycled Sand
    Donguk Choi
    Kyungchan Hong
    Munkhtuvshin Ochirbud
    Didar Meiramov
    Piti Sukontaskuul
    International Journal of Concrete Structures and Materials, 17