A graphene oxide-modified biosensor for non-invasive glucose monitoring in college athletes

被引:1
|
作者
Chen, Li [1 ]
Zhang, Yong [2 ]
Hu, Tongyi [3 ]
机构
[1] Chongqing Normal Univ, Coll Phys Educ & Hlth Sci, Chongqing 401331, Peoples R China
[2] Sichuan Int Studies Univ, Chongqing 400031, Peoples R China
[3] Chongqing Med & Pharmaceut Coll, Fdn Dept, Chongqing 401331, Peoples R China
关键词
PdO nanoparticles; Reduced Graphene Oxide; Glucose monitoring; Athletes; Differential Pulse Voltammetry; BLOOD-GLUCOSE; PALLADIUM NANOPARTICLES; ELECTROCHEMICAL GLUCOSE; PERFORMANCE; POLYMER; SENSOR; ACID;
D O I
10.1016/j.aej.2024.03.051
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The study aims to address the need for accurate and real -time monitoring of glucose levels in college athletes during physical activities. This work reports on the development of an electrochemical sensor that uses glucose oxidase (GOx) immobilized on PdO nanoparticles to reduce graphene oxide (rGO) nanocomposite printed on a cellulose substrate (GO x /PdO-rGO/C-PE). The successful reduction of GO to rGO, the production of the PdO-rGO nanocomposite, and the electropolymerization of GOx on the PdO-rGO nanocomposite were all validated by the material characterization. The biosensor ' s electrochemical response investigation showed that its detection limit was 0.046 mu M and its sensitivity was 0.03239 mu A/ mu M. Excellent stability, reproducibility, and glucose selectivity were shown by the GOx/PdO-rGO/C-PE, which makes it a viable option for consistent and dependable glucose sensing in real-world applications. The real sample analysis assessed how well the combination of GOx/PdOrGO/C-PE could identify glucose in human serum. Furthermore, under a variety of real-world conditions, such as during various physical activities and at different times of the day, the sensor demonstrated outstanding performance in real -time glucose monitoring. These findings imply that the GOx/PdO-rGO/C-PE offers accurate and dependable readings in the field of non-invasive glucose monitoring, which will be especially helpful for college and professional athletes.
引用
收藏
页码:321 / 332
页数:12
相关论文
共 50 条
  • [21] Flexible cellulose paper-based biosensor from inkjet printing for non-invasive glucose monitoring
    Zhang, Binghuan
    Wang, Liyuan
    Chang, Shwu-Jen
    Jing, Yanzhen
    Sun, Tianyi
    Lei, Ziang
    Chen, Ching-Jung
    Liu, Jen-Tsai
    POLYMER TESTING, 2024, 137
  • [22] Non-invasive biosensor for hypoglycemia
    Varadan, VK
    Whitchurch, A
    Saurkesi, K
    MICROFLUIDICS, BIOMEMS, AND MEDICAL MICROSYSTEMS, 2003, 4982 : 340 - 343
  • [23] A highly sensitive electrochemical biosensor for phenol derivatives using a graphene oxide-modified tyrosinase electrode
    Wang, Yue
    Zhai, Fengge
    Hasebe, Yasushi
    Jia, Hongmin
    Zhang, Zhiqiang
    BIOELECTROCHEMISTRY, 2018, 122 : 174 - 182
  • [24] NON-INVASIVE GLUCOSE MONITORING: BREATH, A REALISTIC OPTION?
    Thuillier, B.
    DIABETES TECHNOLOGY & THERAPEUTICS, 2023, 25 : A14 - A14
  • [25] IT Support for Non-Invasive Monitoring of Blood Glucose System
    Kascheev, Nikolay
    Kozyrev, Oleg
    Vanyagin, Alexey
    PROCEEDINGS OF 2018 IEEE EAST-WEST DESIGN & TEST SYMPOSIUM (EWDTS 2018), 2018,
  • [26] Non-invasive blood glucose monitoring is an elusive goose
    Devi Dayal
    International Journal of Diabetes in Developing Countries, 2016, 36 : 399 - 400
  • [27] MICROWAVES BASED SENSORS FOR NON-INVASIVE GLUCOSE MONITORING
    Salem, Enjy Mohamed
    Elsheakh, Dalia N.
    Eldamak, Angie R.
    PROCEEDINGS OF 2022 39TH NATIONAL RADIO SCIENCE CONFERENCE (NRSC'2022), 2022, : 273 - 279
  • [28] Improved system for non-invasive glucose monitoring at home
    Zilberman, S.
    Kononenko, A.
    Weinstein, A.
    Gabis, E.
    Karasik, A.
    DIABETOLOGIA, 2009, 52 : S366 - S366
  • [29] Non-Invasive Blood Glucose Monitoring Technology: A Review
    Tang, Liu
    Chang, Shwu Jen
    Chen, Ching-Jung
    Liu, Jen-Tsai
    SENSORS, 2020, 20 (23) : 1 - 32
  • [30] A Portable Non-Invasive Blood Glucose Monitoring Device
    Buda, R. A.
    Addi, M. Mohd
    2014 IEEE CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES), 2014, : 964 - 969