Monitoring covariance in multivariate time series: Comparing machine learning and statistical approaches

被引:0
|
作者
Weix, Derek [1 ]
Cath, Tzahi Y. [2 ]
Hering, Amanda S. [1 ]
机构
[1] Baylor Univ, Dept Stat Sci, One Bear Pl 97140, Waco, TX 76798 USA
[2] Colorado Sch Mines, Dept Civil & Environm Engn, Golden, CO USA
基金
美国国家科学基金会;
关键词
fault detection; machine learning; MEWMA; real-time; time series data; CONTROL CHARTS; PROCESS VARIABILITY; MATRIX;
D O I
10.1002/qre.3551
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In complex systems with multiple variables monitored at high-frequency, variables are not only temporally autocorrelated, but they may also be nonlinearly related or exhibit nonstationarity as the inputs or operation changes. One approach to handling such variables is to detrend them prior to monitoring and then apply control charts that assume independence and stationarity to the residuals. Monitoring controlled systems is even more challenging because the control strategy seeks to maintain variables at prespecified mean levels, and to compensate, correlations among variables may change, making monitoring the covariance essential. In this paper, a vector autoregressive model (VAR) is compared with a multivariate random forest (MRF) and a neural network (NN) for detrending multivariate time series prior to monitoring the covariance of the residuals using a multivariate exponentially weighted moving average (MEWMA) control chart. Machine learning models have an advantage when the data's structure is unknown or may change. We design a novel simulation study with nonlinear, nonstationary, and autocorrelated data to compare the different detrending models and subsequent covariance monitoring. The machine learning models have superior performance for nonlinear and strongly autocorrelated data and similar performance for linear data. An illustration with data from a reverse osmosis process is given.
引用
收藏
页码:2822 / 2840
页数:19
相关论文
共 50 条
  • [21] Comparing Effectiveness of Statistical Versus Deep Learning for Time Series Forecasting
    Yadav, Hemant N.
    Thakkar, Amit
    Rochwani, Nesh
    Patel, Rudra
    SMART TRENDS IN COMPUTING AND COMMUNICATIONS, VOL 5, SMARTCOM 2024, 2024, 949 : 255 - 265
  • [22] Multivariate Time Series Evapotranspiration Forecasting using Machine Learning Techniques
    Liyew, Chalachew Muluken
    Meo, Rosa
    Di Nardo, Elvira
    Ferraris, Stefano
    38TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2023, 2023, : 377 - 380
  • [23] Multivariate time series analysis from a Bayesian machine learning perspective
    Qiu, Jinwen
    Jammalamadaka, S. Rao
    Ning, Ning
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2020, 88 (10) : 1061 - 1082
  • [24] Multivariate chaotic time series prediction based on extreme learning machine
    Wang Xin-Ying
    Han Min
    ACTA PHYSICA SINICA, 2012, 61 (08)
  • [25] Multivariate time series analysis from a Bayesian machine learning perspective
    Jinwen Qiu
    S. Rao Jammalamadaka
    Ning Ning
    Annals of Mathematics and Artificial Intelligence, 2020, 88 : 1061 - 1082
  • [26] Exploring and Comparing Machine Learning Approaches for Predicting Mood Over Time
    van Breda, Ward
    Pastor, Johnno
    Hoogendoorn, Mark
    Ruwaard, Jeroen
    Asselbergs, Joost
    Riper, Heleen
    INNOVATION IN MEDICINE AND HEALTHCARE 2016, 2016, 60 : 37 - 47
  • [27] A Performance Comparison of Statistical and Machine Learning Techniques in Learning Time Series Data
    Haviluddin
    Alfred, Rayner
    Obit, Joe Henry
    Hijazi, Mohd Hanafi Ahmad
    Ibrahim, Ag Asri Ag
    ADVANCED SCIENCE LETTERS, 2015, 21 (10) : 3037 - 3041
  • [28] Comparing Machine Learning Algorithms for Medical Time-Series Data
    Helmersson, Alex
    Hoti, Faton
    Levander, Sebastian
    Shereef, Aliasgar
    Svensson, Emil
    El-Merhi, Ali
    Vithal, Richard
    Liljencrantz, Jaquette
    Block, Linda
    Herges, Helena Odenstedt
    Staron, Miroslaw
    PRODUCT-FOCUSED SOFTWARE PROCESS IMPROVEMENT, PROFES 2023, PT I, 2024, 14483 : 200 - 207
  • [29] Testing independence for multivariate time series via auto multivariate distance covariance
    Chen, Jingren
    Ma, Xuejun
    Chao, Yue
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024,
  • [30] Deep learning for anomaly detection in multivariate time series: Approaches, applications, and challenges
    Li, Gen
    Jung, Jason J.
    INFORMATION FUSION, 2023, 91 : 93 - 102