Experimental and Numerical Analyses of Timber-Steel Footbridges

被引:2
|
作者
Gocal, Jozef [1 ]
Vican, Josef [1 ]
Odrobinak, Jaroslav [1 ]
Hlinka, Richard [1 ]
Bahleda, Frantisek [1 ]
Wdowiak-Postulak, Agnieszka [2 ]
机构
[1] Univ Zilina, Fac Civil Engn, Dept Struct & Bridges, Univ 8215-1, Zilina 01026, Slovakia
[2] Kielce Univ Technol, Fac Civil Engn & Architecture, Dept Strength Mat & Bldg Struct, Al Tysiaclec Panstwa Polskiego 7, PL-25314 Kielce, Poland
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 07期
关键词
timber-steel footbridge; static and dynamic analysis; experimental analysis; steel cross-girder; timber main girder; real stiffness of the steel-to-timber member connection;
D O I
10.3390/app14073070
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In addition to traditional building materials, such as steel and concrete, wood has been gaining increasing prominence in recent years. In the past, the use of wood was limited due to its susceptibility to damage by fungi, insects, and temperature. These shortcomings were gradually eliminated as the quality of wood processing increased and thanks to modern high-quality insulating and protective materials. The return to the utilisation of this natural building material was also supported by the development of new wood-based materials, such as glued laminated wood, and new types of mechanical fasteners, as well as by the introduction of new design methods provided in the Eurocodes. Within this context, this paper focuses on using wood in transport infrastructure, especially as the basic material for footbridges and small road bridges. Combined timber-steel bridges emerge as a very effective type of superstructure in contemporary road bridges and footbridges, especially in areas with natural exposure. Usually, wood is used for the main bridge girders, while steel is preferred for bridge deck elements-stringers and cross-girders. The results of this parametric study offer optimal structural solutions for footbridges with spans of 12.0-24.0 m, reflecting satisfactory static and dynamic footbridge behaviour. Particular attention is paid to a problematic structural detail-the connection between the steel cross-girder and the timber main girder. Firstly, this connection's characteristics were measured experimentally using nine laboratory samples made of two glued laminated timber blocks, simulating main girders connected with a hot-rolled steel cross-girder. The connection was prepared in three variants, with different heights of the end plates and different numbers of bolts. Subsequently, these characteristics were computed using two numerical FEM models. The first model was created using SCIA Engineer software with a combination of shell and beam finite elements. The second, more sophisticated model was created in the ANSYS software environment using 3D finite elements, allowing us to better take into account the plasticity and orthotropic properties of wood and the points of contact between the individual members. Finally, the experimental results produced by sample testing in the laboratory were compared to the outputs of FEM numerical studies.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Strength capacities and behavior of new composite timber-steel connector
    Schreyer, A
    Lam, F
    Prion, HGL
    Bathon, LA
    JOURNAL OF STRUCTURAL ENGINEERING, 2001, 127 (08) : 888 - 893
  • [22] Field experiment of a hybrid timber-steel deck roadway bridge
    Sasaki, T
    Usuki, S
    Sharma, M
    Iijima, Y
    Honda, H
    Atsumi, A
    INNOVATIVE WOODEN STRUCTURES AND BRIDGES, 2001, : 181 - 186
  • [23] Composite timber-steel encased columns subjected to concentric loading
    Kia, L.
    Valipour, H. R.
    ENGINEERING STRUCTURES, 2021, 232
  • [24] Horizontal deformation capacity and pδ effect of timber-steel frameworks
    Yamada A.
    Kano S.
    AIJ Journal of Technology and Design, 2019, 25 (61) : 1085 - 1089
  • [25] FEASIBILITY STUDY ON PRACTICAL USE OF TIMBER-STEEL HYBRID STRUCTURE
    Harada H.
    Mizutani M.
    Shigematsu M.
    To R.
    Hayashi K.
    Kurata T.
    Saito R.
    Terazawa Y.
    Sakata H.
    Takeuchi T.
    AIJ Journal of Technology and Design, 2022, 28 (68) : 203 - 208
  • [26] Vibration analysis of steel footbridges: Experimental investigation, numerical modeling and theoretical approach
    de Lima, Douglas Mateus
    Gilo, Brenda M. da S.
    Cavalcanti, Maria E. V.
    Pereira, Izadora de L.
    de Lucena, Samuel S. D.
    Galindo, Tiago A.
    Bezerra, Cleberson J. M.
    Alves, Igor R. de M.
    da Silva, Italo S. dos S.
    Medeiros, Ialysson da Silva
    STRUCTURES, 2025, 72
  • [27] An innovative timber-steel hybrid beam consisting of glulam mechanically reinforced by means of steel rod: Analytical and preliminary numerical investigations
    Wang T.
    Wang Y.
    Crocetti R.
    Franco L.
    Schweigler M.
    Wålinder M.
    Journal of Building Engineering, 2021, 43
  • [28] ROTATIONAL STIFFNESS DETERMINATION OF THE SEMI-RIGID TIMBER-STEEL CONNECTION
    Gecys, Tomas
    Daniunas, Alfonsas
    JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT, 2017, 23 (08) : 1021 - 1028
  • [29] Experimental study on shear performance of nail and screw-laminated timber-steel composite and timber-timber systems using low-grade timber and mechanical fasteners
    Shahin, Alireza
    Cowled, Craig J. L.
    Bailleres, Henri
    Fawzia, Sabrina
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 418
  • [30] Numerical and experimental analyses of multiple-dowel steel-to-timber joints in tension perpendicular to grain
    Xu, B. H.
    Bouchair, A.
    Taazount, M.
    Vega, E. J.
    ENGINEERING STRUCTURES, 2009, 31 (10) : 2357 - 2367