On the jerk and snap in motion along non-lightlike curves in Minkowski 3-space

被引:1
|
作者
Elsharkawy, Ayman [1 ]
Cesarano, Clemente [2 ]
Alhazmi, Hadil [3 ]
机构
[1] Tanta Univ, Fac Sci, Dept Math, Tanta, Egypt
[2] Int Telemat Univ Uninettuno, Sect Math, Rome, Italy
[3] Princess Nourah Bint Abdulrahman Univ, Coll Sci, Dept Math Sci, Riyadh, Saudi Arabia
关键词
jerk; kinematics of a particle; Minkowski; 3-space; non-lightlike Frenet curves; Siacci; snap;
D O I
10.1002/mma.10121
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the jerk vector that is the rate of change of the acceleration vector over time. In three-dimensional space, the decomposition of the jerk vector is a new concept in the field. This decomposition expresses the jerk vector as the sum of three unique components in specific directions: the tangential direction, the radial direction in the osculating plane, and the radial direction in the rectifying plane. The snap vector is the rate of change of the jerk vector over time. In this paper, the authors examine non-relativistic particles moving along non-lightlike Frenet curves at low speeds compared to the speed of light in Minkowski 3-space. They resolve the jerk and snap vectors using Frenet-Serret frames. Additionally, the cases for motion along non-lightlike Frenet planar curves in the Minkowski 3-space are given as corollaries. To help understand these results, the paper provides some illustrative examples
引用
收藏
页码:10280 / 10292
页数:13
相关论文
共 50 条
  • [21] Space curves of constant breadth in Minkowski 3-space
    Kocayigit, Huseyin
    Onder, Mehmet
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2013, 192 (05) : 805 - 814
  • [22] Space curves of constant breadth in Minkowski 3-space
    Hüseyin Kocayiğit
    Mehmet Önder
    [J]. Annali di Matematica Pura ed Applicata, 2013, 192 : 805 - 814
  • [23] ON TIMELIKE BERTRAND CURVES IN MINKOWSKI 3-SPACE
    Ucum, Ali
    Ilarslan, Kazim
    [J]. HONAM MATHEMATICAL JOURNAL, 2016, 38 (03): : 467 - 477
  • [24] On Pseudospherical Smarandache Curves in Minkowski 3-Space
    Ozturk, Esra Betul Koc
    Ozturk, Ufuk
    Ilarslan, Kazim
    Nesovic, Emilija
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [25] Extended Rectifying Curves in Minkowski 3-Space
    Yilmaz, Beyhan
    Gok, Ismail
    Yayli, Yusuf
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2016, 26 (02) : 861 - 872
  • [26] Generalized Bertrand Curves in Minkowski 3-Space
    Zhang, Chunxiao
    Pei, Donghe
    [J]. MATHEMATICS, 2020, 8 (12) : 1 - 11
  • [27] Killing magnetic curves in a Minkowski 3-space
    Druta-Romaniuc, Simona Luiza
    Munteanu, Marian Ioan
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (01) : 383 - 396
  • [28] Extended Rectifying Curves in Minkowski 3-Space
    Beyhan Yilmaz
    Ismail Gök
    Yusuf Yayli
    [J]. Advances in Applied Clifford Algebras, 2016, 26 : 861 - 872
  • [29] On the Gauss Map of Surfaces of Revolution with Lightlike Axis in Minkowski 3-Space
    Jin, Minghao
    Pei, Donghe
    Xu, Shu
    [J]. JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
  • [30] Motion along a Space Curve with a Quasi-Frame in Euclidean 3-Space: Acceleration and Jerk
    Elshenhab, Ahmed M.
    Moaaz, Osama
    Dassios, Ioannis
    Elsharkawy, Ayman
    [J]. SYMMETRY-BASEL, 2022, 14 (08):