Multi-Scale Dense Graph Attention Network for Hyperspectral Classification

被引:0
|
作者
Wang, Chen [1 ]
Li, Lu [1 ]
Wang, Zhongqi [1 ]
Ma, Jingyao [1 ]
Kong, Yunlong [2 ]
Wang, Yanfeng [2 ]
Chang, Jianrui [1 ]
Zhang, Zimeng [1 ]
Lin, Xinyu [1 ]
机构
[1] Beijing Informat Sci & Technol Univ, Sch Automat, Dept Artificial Intelligence, Beijing, Peoples R China
[2] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
IMAGE CLASSIFICATION; FUSION;
D O I
10.1080/07038992.2024.2333424
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In recent years, numerous deep learning-based methods have gained increasing attention in hyperspectral classification, particularly the Graph Neural Network, which exhibits superior capabilities in structural description. However, a single graph structure is not suitable for hyperspectral feature representation. Therefore, we propose a novel Multiple-Scale graph network structure, known as the Multi-Scale Dense Graph Attention network for hyperspectral classification. Firstly, semi-supervised local Fisher discriminant analysis and superpixel segmentation were employed for dimensionality reduction and multi-scale graph construction, respectively. Secondly, Spectral-Spatial convolution is applied to extract shallow features from the image. Subsequently, an improved graph self-attention network is sequentially applied to each scale graph, and the different scale graphs are densely connected through spatial feature alignment modules, designed using twice matrix multiplication. Finally, the combined pixel-level feature map from multiple graph spaces is derived, and Spectral-Spatial convolution is employed to fuse the abundant feature maps for hyperspectral classification. Experimental results on various hyperspectral datasets demonstrate the superiority of our MSDesGATnet over many state-of-the-art methods. The code is available at https://github.com/l7170/MSDesGAT.git. Ces derni & egrave;res ann & eacute;es, de nombreuses m & eacute;thodes bas & eacute;es sur l'apprentissage profond ont suscit & eacute; une attention croissante dans la classification hyperspectrale, en particulier le r & eacute;seau neuronal graphique, qui pr & eacute;sente des capacit & eacute;s sup & eacute;rieures en termes de description structurelle. Cependant, une seule structure de graphe n'est pas adapt & eacute;e & agrave; la repr & eacute;sentation des caract & eacute;ristiques hyperspectrales. C'est pourquoi nous proposons une nouvelle structure de r & eacute;seau graphique & agrave; plusieurs & eacute;chelles, connue sous le nom de r & eacute;seau d'attention graphique dense & agrave; plusieurs & eacute;chelles pour la classification hyperspectrale. Tout d'abord, une analyze discriminante de Fisher locale semi-supervis & eacute;e et une segmentation de superpixel ont & eacute;t & eacute; utilis & eacute;es respectivement pour la r & eacute;duction de la dimensionnalit & eacute; et la construction de graphes & agrave; plusieurs & eacute;chelles. Ensuite, une convolution spectrale-spatiale est appliqu & eacute;e pour extraire des caract & eacute;ristiques de niveau sup & eacute;rieur & agrave; partir de l'image. Par la suite, un r & eacute;seau d'attention graphique am & eacute;lior & eacute; est appliqu & eacute; s & eacute;quentiellement & agrave; chaque graphe & agrave; diff & eacute;rentes & eacute;chelles, et les graphes & agrave; diff & eacute;rentes & eacute;chelles sont connect & eacute;s de mani & egrave;re dense gr & acirc;ce & agrave; des modules d'alignement des caract & eacute;ristiques spatiales, con & ccedil;us & agrave; l'aide de deux multiplications matricielles. Enfin, la carte des caract & eacute;ristiques combin & eacute;es au niveau des pixels & agrave; partir de plusieurs espaces de graphe est obtenue, et une convolution spectrale-spatiale est utilis & eacute;e pour fusionner les nombreuses cartes de caract & eacute;ristiques pour la classification hyperspectrale. Les r & eacute;sultats exp & eacute;rimentaux sur divers ensembles de donn & eacute;es hyperspectrales d & eacute;montrent la sup & eacute;riorit & eacute; de notre r & eacute;seau MSDesGAT par rapport & agrave; de nombreuses m & eacute;thodes de pointe. Le code est disponible sur https://github.com/l7170/MSDesGAT.git.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Multi-scale feature learning via residual dynamic graph convolutional network for hyperspectral image classification
    Chen, Rong
    Vivone, Gemine
    Li, Guanghui
    Dai, Chenglong
    Chanussot, Jocelyn
    [J]. International Journal of Remote Sensing, 1600, 3 (863-888):
  • [22] Multi-scale feature learning via residual dynamic graph convolutional network for hyperspectral image classification
    Chen, Rong
    Vivone, Gemine
    Li, Guanghui
    Dai, Chenglong
    Chanussot, Jocelyn
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (03) : 863 - 888
  • [23] Hyperspectral Image Classification Based on Double-Branch Multi-Scale Dual-Attention Network
    Zhang, Heng
    Liu, Hanhu
    Yang, Ronghao
    Wang, Wei
    Luo, Qingqu
    Tu, Changda
    [J]. REMOTE SENSING, 2024, 16 (12)
  • [24] Anisotropic Multi-Scale Graph Convolutional Network for Dense Shape Correspondence
    Farazi, Mohammad
    Zhu, Wenhui
    Yang, Zhangsihao
    Wang, Yalin
    [J]. 2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 3145 - 3154
  • [25] Multi-Scale Attention-Guided Network for mammograms classification
    Xu, Chunbo
    Lou, Meng
    Qi, Yunliang
    Wang, Yiming
    Pi, Jiande
    Ma, Yide
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 68
  • [26] Pulmonary Textures Classification via a Multi-Scale Attention Network
    Xu, Rui
    Cong, Zhen
    Ye, Xinchen
    Hirano, Yasushi
    Kido, Shoji
    Gyobu, Tomoko
    Kawata, Yutaka
    Honda, Osamu
    Tomiyama, Noriyuki
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (07) : 2041 - 2052
  • [27] Gabor Filter-Based Multi-Scale Dense Network Hyperspectral Remote Sensing Image Classification Technique
    Zhang, Chaozhu
    Zhu, Shengrong
    Xue, Dan
    Sun, Song
    [J]. IEEE ACCESS, 2023, 11 : 114146 - 114154
  • [28] Multi-Scale Dilated Convolutional Neural Network for Hyperspectral Image Classification
    Shanshan Zheng
    Wen Liu
    Rui Shan
    Jingyi Zhao
    Guoqian Jiang
    Zhi Zhang
    [J]. Journal of Harbin Institute of Technology(New series), 2021, 28 (04) : 25 - 32
  • [29] Hyperspectral image classification based on multi-scale hybrid convolutional network
    Yang, Yun
    Zhou, Yao
    Chen, Jia-ning
    [J]. CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2023, 38 (03) : 368 - 377
  • [30] Multi-Scale Depthwise Separable Capsule Network for hyperspectral image classification
    Wei, Lin
    Ran, Haoxiang
    Yin, Yuping
    Yang, Huihan
    [J]. PLOS ONE, 2024, 19 (08):