Multi-Scale Dense Graph Attention Network for Hyperspectral Classification

被引:0
|
作者
Wang, Chen [1 ]
Li, Lu [1 ]
Wang, Zhongqi [1 ]
Ma, Jingyao [1 ]
Kong, Yunlong [2 ]
Wang, Yanfeng [2 ]
Chang, Jianrui [1 ]
Zhang, Zimeng [1 ]
Lin, Xinyu [1 ]
机构
[1] Beijing Informat Sci & Technol Univ, Sch Automat, Dept Artificial Intelligence, Beijing, Peoples R China
[2] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
IMAGE CLASSIFICATION; FUSION;
D O I
10.1080/07038992.2024.2333424
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In recent years, numerous deep learning-based methods have gained increasing attention in hyperspectral classification, particularly the Graph Neural Network, which exhibits superior capabilities in structural description. However, a single graph structure is not suitable for hyperspectral feature representation. Therefore, we propose a novel Multiple-Scale graph network structure, known as the Multi-Scale Dense Graph Attention network for hyperspectral classification. Firstly, semi-supervised local Fisher discriminant analysis and superpixel segmentation were employed for dimensionality reduction and multi-scale graph construction, respectively. Secondly, Spectral-Spatial convolution is applied to extract shallow features from the image. Subsequently, an improved graph self-attention network is sequentially applied to each scale graph, and the different scale graphs are densely connected through spatial feature alignment modules, designed using twice matrix multiplication. Finally, the combined pixel-level feature map from multiple graph spaces is derived, and Spectral-Spatial convolution is employed to fuse the abundant feature maps for hyperspectral classification. Experimental results on various hyperspectral datasets demonstrate the superiority of our MSDesGATnet over many state-of-the-art methods. The code is available at https://github.com/l7170/MSDesGAT.git. Ces derni & egrave;res ann & eacute;es, de nombreuses m & eacute;thodes bas & eacute;es sur l'apprentissage profond ont suscit & eacute; une attention croissante dans la classification hyperspectrale, en particulier le r & eacute;seau neuronal graphique, qui pr & eacute;sente des capacit & eacute;s sup & eacute;rieures en termes de description structurelle. Cependant, une seule structure de graphe n'est pas adapt & eacute;e & agrave; la repr & eacute;sentation des caract & eacute;ristiques hyperspectrales. C'est pourquoi nous proposons une nouvelle structure de r & eacute;seau graphique & agrave; plusieurs & eacute;chelles, connue sous le nom de r & eacute;seau d'attention graphique dense & agrave; plusieurs & eacute;chelles pour la classification hyperspectrale. Tout d'abord, une analyze discriminante de Fisher locale semi-supervis & eacute;e et une segmentation de superpixel ont & eacute;t & eacute; utilis & eacute;es respectivement pour la r & eacute;duction de la dimensionnalit & eacute; et la construction de graphes & agrave; plusieurs & eacute;chelles. Ensuite, une convolution spectrale-spatiale est appliqu & eacute;e pour extraire des caract & eacute;ristiques de niveau sup & eacute;rieur & agrave; partir de l'image. Par la suite, un r & eacute;seau d'attention graphique am & eacute;lior & eacute; est appliqu & eacute; s & eacute;quentiellement & agrave; chaque graphe & agrave; diff & eacute;rentes & eacute;chelles, et les graphes & agrave; diff & eacute;rentes & eacute;chelles sont connect & eacute;s de mani & egrave;re dense gr & acirc;ce & agrave; des modules d'alignement des caract & eacute;ristiques spatiales, con & ccedil;us & agrave; l'aide de deux multiplications matricielles. Enfin, la carte des caract & eacute;ristiques combin & eacute;es au niveau des pixels & agrave; partir de plusieurs espaces de graphe est obtenue, et une convolution spectrale-spatiale est utilis & eacute;e pour fusionner les nombreuses cartes de caract & eacute;ristiques pour la classification hyperspectrale. Les r & eacute;sultats exp & eacute;rimentaux sur divers ensembles de donn & eacute;es hyperspectrales d & eacute;montrent la sup & eacute;riorit & eacute; de notre r & eacute;seau MSDesGAT par rapport & agrave; de nombreuses m & eacute;thodes de pointe. Le code est disponible sur https://github.com/l7170/MSDesGAT.git.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Multi-scale receptive fields: Graph attention neural network for hyperspectral image classification
    Ding, Yao
    Zhang, Zhili
    Zhao, Xiaofeng
    Hong, Danfeng
    Cai, Wei
    Yang, Nengjun
    Wang, Bei
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2023, 223
  • [2] Hyperspectral image classification with multi-scale graph convolution network
    Zhao, Wenzhi
    Wu, Dinghui
    Liu, Yuanlin
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (21) : 8380 - 8397
  • [3] HYPERSPECTRAL IMAGE CLASSIFICATION VIA MULTI-SCALE RESIDUAL ATTENTION NETWORK
    Xie, Wen
    Wu, Qinzhe
    Ren, Wen
    Zhang, Yuzhuo
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7649 - 7652
  • [4] A Cross-Channel Dense Connection and Multi-Scale Dual Aggregated Attention Network for Hyperspectral Image Classification
    Wu, Haiyang
    Shi, Cuiping
    Wang, Liguo
    Jin, Zhan
    [J]. REMOTE SENSING, 2023, 15 (09)
  • [5] Hyperspectral Image Classification Based on Multi-Scale Residual Network with Attention Mechanism
    Qing, Yuhao
    Liu, Wenyi
    [J]. REMOTE SENSING, 2021, 13 (03) : 1 - 18
  • [6] Bi-directional LSTM with multi-scale dense attention mechanism for hyperspectral image classification
    Jinxiong Gao
    Xiumei Gao
    Nan Wu
    Hongye Yang
    [J]. Multimedia Tools and Applications, 2022, 81 : 24003 - 24020
  • [7] Bi-directional LSTM with multi-scale dense attention mechanism for hyperspectral image classification
    Gao, Jinxiong
    Gao, Xiumei
    Wu, Nan
    Yang, Hongye
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (17) : 24003 - 24020
  • [8] Hyperspectral Unmixing With Multi-Scale Convolution Attention Network
    Hu, Sheng
    Li, Huali
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 2531 - 2542
  • [9] Multi-Scale Dense Attention Network for Stereo Matching
    Chang, Yuhui
    Xu, Jiangtao
    Gao, Zhiyuan
    [J]. ELECTRONICS, 2020, 9 (11) : 1 - 12
  • [10] Multi-Scale Spatial-Spectral Residual Attention Network for Hyperspectral Image Classification
    Wu, Qinggang
    He, Mengkun
    Liu, Zhongchi
    Liu, Yanyan
    [J]. ELECTRONICS, 2024, 13 (02)