Hyperspectral image classification via nonlocal joint kernel sparse representation based on local covariance

被引:0
|
作者
Li, Dan [1 ,2 ]
Kong, Fanqiang [2 ]
Wang, Qiang [3 ]
机构
[1] Key Laboratory of Space Photoelectric Detection and Perception (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, No. 29 Yudao Street, Nanjing,210016, China
[2] Nanjing University of Aeronautics and Astronautics, College of Astronautics, No. 29 Yudao Street, Nanjing,210016, China
[3] Harbin Institute of Technology, Control Science and Engineering, No. 92 West Da-Zhi Street, Harbin,150001, China
来源
Signal Processing | 2021年 / 180卷
基金
中央高校基本科研业务费专项资金资助;
关键词
Classification accuracy - Classification methods - Classification results - Linearly inseparable - Maximum noise fraction - Self similarity properties - Sparse representation - Spectral correlation;
D O I
暂无
中图分类号
学科分类号
摘要
71
引用
收藏
相关论文
共 50 条
  • [31] Hyperspectral Image Classification via Joint Sparse representation of Multi-layer Superpixles
    Sima, Haifeng
    Mi, Aizhong
    Han, Xue
    Du, Shouheng
    Wang, Zhiheng
    Wang, Jianfang
    [J]. KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2018, 12 (10): : 5015 - 5038
  • [32] Nearest Regularized Joint Sparse Representation for Hyperspectral Image Classification
    Chen, Chen
    Chen, Na
    Peng, Jiangtao
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (03) : 424 - 428
  • [33] Spectral-spatial hyperspectral image ensemble classification via joint sparse representation
    Zhang, Erlei
    Zhang, Xiangrong
    Jiao, Licheng
    Li, Lin
    Hou, Biao
    [J]. PATTERN RECOGNITION, 2016, 59 : 42 - 54
  • [34] JOINT GROUP SPARSE COLLABORATIVE REPRESENTATION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Tian, Qing
    Zhao, Juan
    Bai, Xia
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 846 - 849
  • [35] Adaptive kernel sparse representation based on multiple feature learning for hyperspectral image classification
    Li, Dan
    Wang, Qiang
    Kong, Fanqiang
    [J]. NEUROCOMPUTING, 2020, 400 : 97 - 112
  • [36] Superpixel-feature-based multiple kernel sparse representation for hyperspectral image classification
    Li, Dan
    Wang, Qiang
    Kong, Fanqiang
    [J]. SIGNAL PROCESSING, 2020, 176
  • [37] Spatial-Spectral Kernel Sparse Representation for Hyperspectral Image Classification
    Liu, Jianjun
    Wu, Zebin
    Wei, Zhihui
    Xiao, Liang
    Sun, Le
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2013, 6 (06) : 2462 - 2471
  • [38] A Hyperspectral Image Classification Method Based on Weight Wavelet Kernel Joint Sparse Representation Ensemble and β-Whale Optimization Algorithm
    Wang, Mingwei
    Jia, Zitong
    Luo, Jianwei
    Chen, Maolin
    Wang, Shuping
    Ye, Zhiwei
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 2535 - 2550
  • [39] Hyperspectral Image Denoising via Nonlocal Spectral Sparse Subspace Representation
    Wang, Hailin
    Peng, Jiangjun
    Cao, Xiangyong
    Wang, Jianjun
    Zhao, Qibin
    Meng, Deyu
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 5189 - 5203
  • [40] Hyperspectral Image Classification by Spatial-Spectral Derivative-Aided Kernel Joint Sparse Representation
    Wang, Jianing
    Jiao, Licheng
    Liu, Hongying
    Yang, Shuyuan
    Liu, Fang
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) : 2485 - 2500