Decision-making and planning are the core functions of automated driving systems and the key to improving the driving safety, driving experience and travel efficiency of automated vehicles. The main challenges faced by decision-making and planning are how to meet the extremely high reliability and safety requirements for automated driving, and how to effectively deal with scenario complexity, environmental variability, traffic dynamicity, game interactivity, and information completeness, as well as how to generate human-like driving behavior, so that vehicles can integrate into the traffic ecosystem naturally. A systematic and overall review of the technical points of decision-making and planning is presented in this paper to gain a comprehensive understanding of their frontier issues and research progress. Firstly, the research progress of situational awareness-oriented behavior prediction is reviewed from three perspectives, namely data-driven driving behavior prediction, probabilistic model driving behavior prediction, and personalized driving behavior prediction. Secondly, behavior decision-making is summarized into reactive decision-making, learning decision-making and interactive decision-making, all of which are analyzed in turn. Thirdly, motion planning and its applications are compared and analyzed from a methodological perspective, including graph search methods, sampling methods, numerical methods, interpolation and curve fitting methods, etc. Additionally, the key scientific issues and major research progress of end-to-end decision-making and planning are summarized and analyzed. Finally, the significant impact of decision-making and planning on improving the intelligent level of automated vehicles is summarized, and the future development trends and technical challenges are prospected. © 2024 Xi'an Highway University. All rights reserved.