Deep Learning Models for Aorta Segmentation in Computed Tomography Images: A Systematic Review And Meta-Analysis

被引:0
|
作者
Wang, Ting-Wei [1 ,2 ]
Tzeng, Yun-Hsuan [2 ,3 ]
Hong, Jia-Sheng [1 ]
Liu, Ho-Ren [3 ]
Wu, Kuan-Ting [1 ,2 ]
Fu, Hao-Neng [4 ]
Lee, Yung-Tsai [4 ]
Yin, Wei-Hsian [2 ,4 ]
Wu, Yu-Te [1 ,5 ,6 ]
机构
[1] Natl Yang Ming Chiao Tung Univ, Inst Biophoton, 155 Sec 2,Li Nong St, Taipei 112304, Taiwan
[2] Natl Yang Ming Chiao Tung Univ, Coll Med, Sch Med, Taipei, Taiwan
[3] Cheng Hsin Gen Hosp, Hlth Management Ctr, Div Med Imaging, Taipei, Taiwan
[4] Cheng Hsin Gen Hosp, Ctr Heart, Taipei, Taiwan
[5] Natl Yang Ming Chiao Tung Univ, Brain Res Ctr, Hsinchu, Taiwan
[6] Natl Yang Ming Chiao Tung Univ, Coll Med Device Innovat, Translat Ctr, Hsinchu, Taiwan
关键词
Aorta segmentation; Computed tomography; Convolutional neural network; Medical image analysis;
D O I
10.1007/s40846-024-00881-9
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
PurposeThis systematic review and meta-analysis was conducted to evaluate the usefulness of deep learning (DL) models for aorta segmentation in computed tomography (CT) images.MethodsAdhering to 2020 PRISMA guidelines, we systematically searched PubMed, Embase, and Web of Science for studies published up to March 13, 2024, that used DL models for aorta segmentation in adults' chest CT images. We excluded studies that did not use DL models, involved nonhuman subjects or aortic diseases (aneurysms and dissections), or lacked essential data for meta-analysis. Segmentation performance was evaluated primarily in terms of Dice scores. Subgroup analyses were performed to identify variations related to geographical location and methodology.ResultsOur review of 16 studies indicated that DL models achieve high segmentation accuracy, with a pooled Dice score of 96%. We further noted geographical variations in model performance but no significant publication bias, according to the Egger test.ConclusionDL models facilitate aorta segmentation in CT images, and they can therefore guide accurate, efficient, and standardized diagnosis and treatment planning for cardiovascular diseases. Future studies should address the current challenges to enhance model generalizability and evaluate clinical benefits and thus expand the application of DL models in clinical practice.
引用
收藏
页码:489 / 498
页数:10
相关论文
共 50 条
  • [41] Deep Learning Based Identification and Segmentation of Lung Tumors on Computed Tomography Images
    Kashyap, M.
    Panjwani, N.
    Hasan, M. A. S. A.
    Huang, C.
    Bush, K.
    Dong, P.
    Zaky, S. S.
    Chin, A. L.
    Vitzthum, L.
    Loo, B. W., Jr.
    Diehn, M.
    Xing, L.
    Gensheimer, M. F.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2021, 111 (03): : E92 - E93
  • [42] Deep learning-based Pulmonary Arterial Segmentation in Computed Tomography Images
    Merchan, Mishell
    Suarez, Juan
    Pertuz, Said
    2024 XXIV SYMPOSIUM OF IMAGE, SIGNAL PROCESSING, AND ARTIFICIAL VISION, STSIVA 2024, 2024,
  • [43] Deep Learning Models Used in the Diagnostic Workup of Keratoconus: A Systematic Review and Exploratory Meta-Analysis
    Bodmer, Nicolas S.
    Christensen, Dylan G.
    Bachmann, Lucas M.
    Faes, Livia
    Sanak, Frantisek
    Iselin, Katja
    Kaufmann, Claude
    Thiel, Michael A.
    Baenninger, Philipp B.
    CORNEA, 2024, 43 (07) : 916 - 931
  • [44] Liver segmentation from computed tomography images using cascade deep learning
    Araujo, Jose Denes Lima
    da Cruz, Luana Batista
    Diniz, Joao Otavio Bandeira
    Ferreira, Jonnison Lima
    Silva, Aristofanes Correa
    de Paiva, Anselmo Cardoso
    Gattass, Marcelo
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 140
  • [45] Deep learning algorithms for detection of diabetic macular edema in OCT images: A systematic review and meta-analysis
    Li, He-Yan
    Wang, Dai-Xi
    Dong, Li
    Wei, Wen-Bin
    EUROPEAN JOURNAL OF OPHTHALMOLOGY, 2023, 33 (01) : 278 - 290
  • [46] Kidney segmentation in ultrasound, magnetic resonance and computed tomography images: A systematic review
    Torres, Helena R.
    Queiros, Sandro
    Morais, Pedro
    Oliveira, Bruno
    Fonseca, Jaime C.
    Vilaca, Joao L.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 157 : 49 - 67
  • [47] The influence of manual segmentation strategies and different phases selection on machine learning-based computed tomography in renal tumors: a systematic review and meta-analysis
    Song, Honghao
    Wang, Xiaoqing
    Wu, Rongde
    Liu, Wei
    RADIOLOGIA MEDICA, 2024, 129 (07): : 1025 - 1037
  • [48] Deep learning for cephalometric landmark detection: systematic review and meta-analysis
    Schwendicke, Falk
    Chaurasia, Akhilanand
    Arsiwala, Lubaina
    Lee, Jae-Hong
    Elhennawy, Karim
    Jost-Brinkmann, Paul-Georg
    Demarco, Flavio
    Krois, Joachim
    CLINICAL ORAL INVESTIGATIONS, 2021, 25 (07) : 4299 - 4309
  • [49] Diagnostic Accuracy of Computed Tomography to Exclude Pheochromocytoma: A Systematic Review, Meta-analysis, and Cost Analysis
    Buitenwerf, Edward
    Berends, Annika M. A.
    van Asselt, Antoinette D., I
    Korteweg, Tijmen
    Greuter, Marcel J. W.
    Veeger, Nic J. M.
    Links, Thera P.
    Dullaart, Robin P. F.
    Kerstens, Michiel N.
    MAYO CLINIC PROCEEDINGS, 2019, 94 (10) : 2040 - 2052
  • [50] Deep learning for cephalometric landmark detection: systematic review and meta-analysis
    Falk Schwendicke
    Akhilanand Chaurasia
    Lubaina Arsiwala
    Jae-Hong Lee
    Karim Elhennawy
    Paul-Georg Jost-Brinkmann
    Flavio Demarco
    Joachim Krois
    Clinical Oral Investigations, 2021, 25 : 4299 - 4309