MINE: A method of multi-interaction heterogeneous information network embedding

被引:0
|
作者
Zhu D. [1 ]
Sun Y. [1 ]
Li X. [2 ]
Du H. [3 ]
Qu R. [2 ]
Yu P. [4 ]
Piao X. [1 ]
Higgs R. [5 ]
Cao N. [6 ]
机构
[1] School of Computer Science and Technology, Harbin Institute of Technology, Weihai
[2] Department of Mathematics, Harbin Institute of Technology, Weihai
[3] School of Astronautics, Harbin Institute of Technology, Harbin
[4] School of Information Science and Engineering, Hebei University of Science and Technology, Shijiazhuang
[5] School of Mathematics and Statistics, University College Dublin, Dublin
[6] School of Internet of Things and Software Technology, Wuxi Vocational College of Science and Technology, Wuxi
来源
Yu, Pingping (yppflx@hotmail.com) | 2020年 / Tech Science Press卷 / 63期
关键词
Data mining; Interactive network; Network embedding; Network representation learning;
D O I
10.32604/CMC.2020.010008
中图分类号
学科分类号
摘要
Interactivity is the most significant feature of network data, especially in social networks. Existing network embedding methods have achieved remarkable results in learning network structure and node attributes, but do not pay attention to the multi-interaction between nodes, which limits the extraction and mining of potential deep interactions between nodes. To tackle the problem, we propose a method called Multi-Interaction heterogeneous information Network Embedding (MINE). Firstly, we introduced the multi-interactions heterogeneous information network and extracted complex heterogeneous relation sequences by the multi-interaction extraction algorithm. Secondly, we use a well-designed multi-relationship network fusion model based on the attention mechanism to fuse multiple interactional relationships. Finally, applying a multitasking model makes the learned vector contain richer semantic relationships. A large number of practical experiments prove that our proposed method outperforms existing methods on multiple data sets. © 2020 Tech Science Press. All rights reserved.
引用
收藏
页码:1343 / 1356
页数:13
相关论文
共 50 条
  • [1] MINE: A Method of Multi-Interaction Heterogeneous Information Network Embedding
    Zhu, Dongjie
    Sun, Yundong
    Li, Xiaofang
    Du, Haiwen
    Qu, Rongning
    Yu, Pingping
    Piao, Xuefeng
    Higgs, Russell
    Cao, Ning
    CMC-COMPUTERS MATERIALS & CONTINUA, 2020, 63 (03): : 1343 - 1356
  • [2] Multi-view Dynamic Heterogeneous Information Network Embedding
    Zhang, Zhenghao
    Huang, Jianbin
    Tan, Qinglin
    COMPUTER JOURNAL, 2022, 65 (08): : 2016 - 2033
  • [3] Fusing heterogeneous information for multi-modal attributed network embedding
    Yang, Jieyi
    Zhu, Feng
    Dong, Yihong
    Qian, Jiangbo
    APPLIED INTELLIGENCE, 2023, 53 (19) : 22328 - 22347
  • [4] Heterogeneous information network embedding with incomplete multi-view fusion
    Susu ZHENG
    Weiwei YUAN
    Donghai GUAN
    Frontiers of Computer Science, 2022, 16 (05) : 212 - 214
  • [5] Multi-source information fusion based heterogeneous network embedding
    Li, Bentian
    Pi, Dechang
    Lin, Yunxia
    Khan, Izhar Ahmed
    Cui, Lin
    INFORMATION SCIENCES, 2020, 534 : 53 - 71
  • [6] Fusing heterogeneous information for multi-modal attributed network embedding
    Yang Jieyi
    Zhu Feng
    Dong Yihong
    Qian Jiangbo
    Applied Intelligence, 2023, 53 : 22328 - 22347
  • [7] Heterogeneous information network embedding with incomplete multi-view fusion
    Zheng, Susu
    Yuan, Weiwei
    Guan, Donghai
    FRONTIERS OF COMPUTER SCIENCE, 2022, 16 (05)
  • [8] Heterogeneous information network embedding with incomplete multi-view fusion
    Susu Zheng
    Weiwei Yuan
    Donghai Guan
    Frontiers of Computer Science, 2022, 16
  • [9] HINE: Heterogeneous Information Network Embedding
    Chen, Yuxin
    Wang, Chenguang
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2017), PT I, 2017, 10177 : 180 - 195
  • [10] Temporal Heterogeneous Information Network Embedding
    Huang, Hong
    Shi, Ruize
    Zhou, Wei
    Wang, Xiao
    Jin, Hai
    Fu, Xiaoming
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 1470 - 1476