HINE: Heterogeneous Information Network Embedding

被引:16
|
作者
Chen, Yuxin [1 ]
Wang, Chenguang [2 ]
机构
[1] Peking Univ, Key Lab High Confidence Software Technol, Minist Educ, EECS, Beijing, Peoples R China
[2] IBM Res Almaden, San Jose, CA USA
关键词
Heterogeneous information network; Network embedding; Semantic embedding;
D O I
10.1007/978-3-319-55753-3_12
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Network embedding has shown its effectiveness in embedding homogeneous networks. Compared with homogeneous networks, heterogeneous information networks (HINs) contain semantic information from multi-typed entities and relations, and are shown to be a more effective model for real world data. The existing network embedding methods fail to explicitly capture the semantics in HINs. In this paper, we propose an HIN embedding model (HINE), which consists of local and global semantic embedding. Local semantic embedding aims to incorporate entity type information via embedding the local structures and types of the entities in a supervised way. Global semantic embedding leverages multihop relation types among entities to propagate the global semantics via a Markov Random Field (MRF) to impact the embedding vectors. By doing so, HINE is capable to capture both local and global semantic information in the embedding vectors. Experimental results
引用
收藏
页码:180 / 195
页数:16
相关论文
共 50 条
  • [1] Temporal Heterogeneous Information Network Embedding
    Huang, Hong
    Shi, Ruize
    Zhou, Wei
    Wang, Xiao
    Jin, Hai
    Fu, Xiaoming
    [J]. PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 1470 - 1476
  • [2] Hyperbolic Heterogeneous Information Network Embedding
    Wang, Xiao
    Zhang, Yiding
    Shi, Chuan
    [J]. THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 5337 - 5344
  • [3] Heterogeneous Information Network Embedding for Recommendation
    Shi, Chuan
    Hu, Binbin
    Zhao, Wayne Xin
    Yu, Philip S.
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2019, 31 (02) : 357 - 370
  • [4] Network Schema Preserving Heterogeneous Information Network Embedding
    Zhao, Jianan
    Wang, Xiao
    Shi, Chuan
    Liu, Zekuan
    Ye, Yanfang
    [J]. PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 1366 - 1372
  • [5] Embedding Heterogeneous Information Network in Hyperbolic Spaces
    Zhang, Yiding
    Wang, Xiao
    Liu, Nian
    Shi, Chuan
    [J]. ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2022, 16 (02)
  • [6] Heterogeneous Information Network Embedding for Mention Recommendation
    Yi, Feng
    Jiang, Bo
    Wu, Jianjun
    [J]. IEEE ACCESS, 2020, 8 : 91394 - 91404
  • [7] Heterogeneous Information Network Embedding With Adversarial Disentangler
    Wang, Ruijia
    Shi, Chuan
    Zhao, Tianyu
    Wang, Xiao
    Ye, Yanfang
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (02) : 1581 - 1593
  • [8] AHINE: Adaptive Heterogeneous Information Network Embedding
    Lin, Yucheng
    Hong, Huiting
    Yang, Xiaoqing
    Gong, Pinghua
    Li, Zang
    Ye, Jieping
    [J]. 11TH IEEE INTERNATIONAL CONFERENCE ON KNOWLEDGE GRAPH (ICKG 2020), 2020, : 100 - 107
  • [9] Heterogeneous Information Network Embedding for Mention Recommendation
    Yi, Feng
    Jiang, Bo
    Wu, Jianjun
    [J]. IEEE Access, 2020, 8 : 91394 - 91404
  • [10] HeteSpaceyWalk: A Heterogeneous Spacey Random Walk for Heterogeneous Information Network Embedding
    He, Yu
    Song, Yangqiu
    Li, Jianxin
    Ji, Cheng
    Peng, Jian
    Peng, Hao
    [J]. PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), 2019, : 639 - 648