PFSC: Parameter-free sphere classifier for imbalanced data classification

被引:1
|
作者
Park, Yeontark [1 ]
Lee, Jong-Seok [2 ]
机构
[1] LG EnergySolut, Intelligence Algorithm Dept, Gwacheon 13818, South Korea
[2] Sungkyunkwan Univ, Dept Ind Engn, Suwon 16419, South Korea
基金
新加坡国家研究基金会;
关键词
Classification; Class imbalance; Sphere-based classifier; Parameter-free classifier; Area under the receiver operating characteristic; SMOTE; CHALLENGES; ALGORITHMS;
D O I
10.1016/j.eswa.2024.123822
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Imbalanced data classification is a prevalent challenge in real -world applications. While a conventional sphere -based classification algorithm, random sphere cover (RSC), evenly constructs a set of spheres for two classes in balanced data using a parameter for the minimum sphere size, it struggles with constructing minority spheres in class-imbalanced data. Although RSC can be combined with existing oversampling methods, this approach requires additional hyperparameters, and its effectiveness decreases as the minority size decreases. To overcome these issues, we propose a novel approach that employs the area under the receiver operating characteristic curve (AUC) to construct and expand spheres for minority class. This parameter -free sphere classifier considers both the majority and minority classes simultaneously. We conducted a thorough experiment on both synthetic and 50 real datasets, which revealed that our proposed method outperformed existing various oversampling techniques with the lowest training time.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] A user parameter-free approach for mining robust sequential classification rules
    Egho, Elias
    Gay, Dominique
    Boulle, Marc
    Voisine, Nicolas
    Clerot, Fabrice
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2017, 52 (01) : 53 - 81
  • [32] Approaching a parameter-free metadynamics
    Dickson, Bradley M.
    [J]. PHYSICAL REVIEW E, 2011, 84 (03):
  • [33] Parameter-Free Audio Motif Discovery in Large Data Archives
    Hao, Yuan
    Shokoohi-Yekta, Mohammad
    Papageorgiou, George
    Keogh, Eamonn
    [J]. 2013 IEEE 13TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2013, : 261 - 270
  • [34] Integrative Parameter-Free Clustering of Data with Mixed Type Attributes
    Boehm, Christian
    Goebl, Sebastian
    Oswald, Annahita
    Plant, Claudia
    Plavinski, Michael
    Wackersreuther, Bianca
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT I, PROCEEDINGS, 2010, 6118 : 38 - +
  • [35] PARAMETER-FREE UNIVERSAL INDUCTION
    KAYE, R
    [J]. ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1989, 35 (05): : 443 - 456
  • [36] Parameter-free exchange functional
    Tsuneda, T
    Hirao, K
    [J]. PHYSICAL REVIEW B, 2000, 62 (23) : 15527 - 15531
  • [37] PARAMETER-FREE CLUSTERING MODEL
    GITMAN, I
    [J]. PATTERN RECOGNITION, 1972, 4 (03) : 307 - &
  • [38] Parameter-free polymorphic types
    Aehlig, Klaus
    [J]. ANNALS OF PURE AND APPLIED LOGIC, 2008, 156 (01) : 3 - 12
  • [39] Binary imbalanced big data classification based on fuzzy data reduction and classifier fusion
    Zhai, Junhai
    Wang, Mohan
    Zhang, Sufang
    [J]. SOFT COMPUTING, 2022, 26 (06) : 2781 - 2792
  • [40] Binary imbalanced big data classification based on fuzzy data reduction and classifier fusion
    Junhai Zhai
    Mohan Wang
    Sufang Zhang
    [J]. Soft Computing, 2022, 26 : 2781 - 2792