Near-field radiative heat transfer between nanoporous GaN films

被引:0
|
作者
Han, Xiaozheng [1 ]
Zhang, Jihong [1 ]
Liu, Haotuo [2 ]
Wu, Xiaohu [3 ]
Leng, Huiwen [1 ]
机构
[1] Yantai Univ, Sch Electromech & Automot Engn, Yantai 264005, Peoples R China
[2] Harbin Univ Sci & Technol, Key Lab Adv Mfg & Intelligent Technol, Minist Educ, Harbin 150080, Peoples R China
[3] Shandong Inst Adv Technol, Thermal Sci Res Ctr, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
near-field radiative heat transfer; nanoporous GaN film; surface phonon polaritons; surface plasmon polaritons; SURFACE PHONON-POLARITON; THERMAL-RADIATION; DEVICES;
D O I
10.1088/1674-1056/ad09a9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Photon tunneling effects give rise to surface waves, amplifying radiative heat transfer in the near-field regime. Recent research has highlighted that the introduction of nanopores into materials creates additional pathways for heat transfer, leading to a substantial enhancement of near-field radiative heat transfer (NFRHT). Being a direct bandgap semiconductor, GaN has high thermal conductivity and stable resistance at high temperatures, and holds significant potential for applications in optoelectronic devices. Indeed, study of NFRHT between nanoporous GaN films is currently lacking, hence the physical mechanism for adding nanopores to GaN films remains to be discussed in the field of NFRHT. In this work, we delve into the NFRHT of GaN nanoporous films in terms of gap distance, GaN film thickness and the vacuum filling ratio. The results demonstrate a 27.2% increase in heat flux for a 10 nm gap when the nanoporous filling ratio is 0.5. Moreover, the spectral heat flux exhibits redshift with increase in the vacuum filling ratio. To be more precise, the peak of spectral heat flux moves from omega = 1.31 x 10(14) rad & sdot;s(-1) to omega = 1.23 x 10(14) rad & sdot;s(-1) when the vacuum filling ratio changes from f = 0.1 to f = 0.5; this can be attributed to the excitation of surface phonon polaritons. The introduction of graphene into these configurations can highly enhance the NFRHT, and the spectral heat flux exhibits a blueshift with increase in the vacuum filling ratio, which can be explained by the excitation of surface plasmon polaritons. These findings offer theoretical insights that can guide the extensive utilization of porous structures in thermal control, management and thermal modulation.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Near-field radiative heat transfer between clusters of dielectric nanoparticles
    Dong, J.
    Zhao, J. M.
    Liu, L. H.
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2017, 197 : 114 - 122
  • [32] Penetration depth in near-field radiative heat transfer between metamaterials
    Basu, Soumyadipta
    Francoeur, Mathieu
    APPLIED PHYSICS LETTERS, 2011, 99 (14)
  • [33] Enhancing near-field radiative heat transfer by means of superconducting thin films
    Castillo-Lopez, S. G.
    Villarreal, C.
    Esquivel-Sirvent, R.
    Pirruccio, G.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 182
  • [34] Near-Field Radiative Heat Transfer Between Two SiC Plates With/Without Coated Metal Films
    Wu, Ya
    Zhou, Leping
    Du, Xiaoze
    Yang, Yongping
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2015, 15 (04) : 3017 - 3024
  • [35] Dynamic measurement of near-field radiative heat transfer
    S. Lang
    G. Sharma
    S. Molesky
    P. U. Kränzien
    T. Jalas
    Z. Jacob
    A. Yu. Petrov
    M. Eich
    Scientific Reports, 7
  • [36] Dynamic measurement of near-field radiative heat transfer
    Lang, S.
    Sharma, G.
    Molesky, S.
    Kraenzien, P. U.
    Jalas, T.
    Jacob, Z.
    Petrov, A. Yu.
    Eich, M.
    SCIENTIFIC REPORTS, 2017, 7
  • [37] Near-field radiative heat transfer in hyperbolic materials
    Liu, Ruiyi
    Zhou, Chenglong
    Zhang, Yong
    Cui, Zheng
    Wu, Xiaohu
    Yi, Hongliang
    INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING, 2022, 4 (03)
  • [38] Near-field radiative heat transfer in mesoporous alumina
    Li Jing
    Feng Yan-Hui
    Zhang Xin-Xin
    Huang Cong-Liang
    Wang Ge
    CHINESE PHYSICS B, 2015, 24 (01)
  • [39] Near-field radiative heat transfer in mesoporous alumina
    李静
    冯妍卉
    张欣欣
    黄丛亮
    王戈
    ChinesePhysicsB, 2015, 24 (01) : 342 - 348
  • [40] Near-field radiative heat transfer for structured surfaces
    Biehs, Svend-Age
    Huth, Oliver
    Rueting, Felix
    PHYSICAL REVIEW B, 2008, 78 (08):