MILD SOLUTIONS TO TIME FRACTIONAL 2D-NAVIER-STOKES EQUATIONS WITH DELAY DRIVEN BY COLORED NOISE

被引:0
|
作者
Xu, Jiaohui [1 ]
Caraballo, Tomas [2 ,3 ]
Valero, Jose [4 ]
机构
[1] Northwest Univ, Ctr Nonlinear Studies, Sch Math, Xian 710127, Peoples R China
[2] Univ Seville, Dept Ecuac Diferenciales & Anal Numer, Fac Matemat, c Tarfia s-n, Seville 41012, Spain
[3] Wenzhou Univ, Dept Math, Wenzhou 325035, Zhejiang, Peoples R China
[4] Univ Miguel Hernandez de Elche, Ctr Invest Operat, Avda Univ S-n, Elche 03202, Spain
基金
中国国家自然科学基金;
关键词
Time fractional 2D-Navier-Stokes equations; mild solutions; finite delay; colored noise; NAVIER-STOKES EQUATIONS;
D O I
10.3934/dcdss.2024053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to show the local and global existence and uniqueness of mild solutions to time fractional 2D-Navier-Stokes equations with bounded delay driven by colored noise. More precisely, under suitable assumptions, we extend and improve some results of [3] in which they assumed the external force is zero (F = 0). We emphasize that for the global existence and uniqueness of mild solutions, the model with higher regularity on the convective term is investigated since the singular kernel with current defined phase space cannot provide us appropriate estimates.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] On the uniqueness of mild solutions to the time-fractional Navier-Stokes equations in LN (RN)N
    Sousa, J. Vanterler da C.
    Gala, Sadek
    de Oliveira, E. Capelas
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (01):
  • [22] Time Global Mild Solutions of Navier-Stokes-Oseen Equations
    Viet Duoc Trinh
    Acta Mathematica Scientia, 2021, 41 : 450 - 460
  • [23] Time Global Mild Solutions of Navier-Stokes-Oseen Equations
    Trinh, Viet Duoc
    ACTA MATHEMATICA SCIENTIA, 2021, 41 (02) : 450 - 460
  • [24] TIME GLOBAL MILD SOLUTIONS OF NAVIER-STOKES-OSEEN EQUATIONS
    Viet Duoc TRINH
    Acta Mathematica Scientia, 2021, 41 (02) : 450 - 460
  • [25] ATTRACTORS FOR A DOUBLE TIME-DELAYED 2D-NAVIER-STOKES MODEL
    Garcia-Luengo, Julia
    Marin-Rubio, Pedro
    Planas, Gabriela
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (10) : 4085 - 4105
  • [26] ON SOLUTIONS TO THE TIME-FRACTIONAL NAVIER-STOKES EQUATIONS WITH DAMPING
    Pal, Subha
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2024, 54 (02) : 509 - 518
  • [27] 2D stochastic Navier-Stokes equations driven by jump noise
    Brzezniak, Zdzislaw
    Hausenblas, Erika
    Zhu, Jiahui
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 79 : 122 - 139
  • [28] Fractional Navier-Stokes Equations With Delay Conditions
    Ben Tahir, Hachem
    Melliani, S.
    Elomari, M.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42 : 15 - 15
  • [29] MARTINGALE SOLUTIONS FOR STOCHASTIC NAVIER-STOKES EQUATIONS DRIVEN BY LEVY NOISE
    Sakthivel, Kumarasamy
    Sritharan, Sivaguru S.
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2012, 1 (02): : 355 - 392
  • [30] Well-Posedness of Mild Solutions for the Fractional Navier–Stokes Equations in Besov Spaces
    Xuan-Xuan Xi
    Yong Zhou
    Mimi Hou
    Qualitative Theory of Dynamical Systems, 2024, 23