Polycaprolactone/graphene oxide/magnesium oxide as a novel composite scaffold for bone tissue engineering: Preparation and physical/ biological assessment

被引:2
|
作者
Niknam, Zahra [1 ,2 ]
Azarbayjani, Anahita Fathi [3 ]
Rafiaei, Seyed Mahdi [4 ]
Rasmi, Yousef [1 ,5 ]
Tayebi, Lobat [6 ]
机构
[1] Urmia Univ Med Sci, Cellular & Mol Med Res Inst, Cellular & Mol Res Ctr, Orumiyeh, Iran
[2] Urmia Univ Med Sci, Cellular & Mol Med Res Inst, Neurophysiol Res Ctr, Orumiyeh, Iran
[3] Urmia Univ Med Sci, Sch Pharm, Dept Pharmaceut, Orumiyeh, Iran
[4] Isfahan Univ Technol, Golpayegan Coll Engn, Mat Engn Grp, Golpayegan 8771767498, Iran
[5] Urmia Univ Med Sci, Sch Med, Dept Clin Biochem, Orumiyeh, Iran
[6] Marquette Univ, Sch Dent, Milwaukee, WI USA
基金
美国国家卫生研究院;
关键词
Polycaprolactone; Graphene oxide; Nano magnesium oxide; Electrospinning; Composite scaffold; Bone tissue engineering; REDUCED GRAPHENE OXIDE; MESENCHYMAL STEM-CELLS; NANOFIBROUS SCAFFOLDS; OSTEOPOROTIC BONE; MAGNESIUM; DIFFERENTIATION; OSTEOBLASTS; FABRICATION; HYDROGEL; CHITOSAN;
D O I
10.1016/j.jddst.2024.105531
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Mechanically robust biocomposite scaffolds were fabricated by the electrospinning method for bone tissue engineering using a blend of polycaprolactone (PCL), and graphene oxide (GO) with magnesium oxide (MgO) nanoparticles. Physicochemical characteristics including morphology, tensile strength, swelling behavior, biodegradability, contact angle, cell viability, alkaline phosphatase (ALP) activity, mineralization ability, and osteogenic gene expression of the scaffolds were characterized. The addition of small amounts of GO and MgO nanoparticles significantly improved the morphological and mechanical properties of the PCL scaffold. The hydrophilicity, swelling ratio, and biodegradability of the developed composite scaffolds were improved. The PCL/GO/MgO scaffold demonstrated excellent biocompatibility and in-vitro biological performance with adipose-derived mesenchymal stem cells. Cell attachment, proliferation, ALP activity, mineral deposition, and osteogenesis-related gene expression were enhanced when compared to the pure PCL and PCL/GO scaffolds. Simultaneous incorporation of GO and MgO nanoparticles at a concentration of 2 wt% dramatically increased the differentiation of MSCs into osteoblasts. These findings may suggest that the hydrophilic properties and high protein adsorption of PCL/GO/MgO scaffold can stimulate cell proliferation, and nucleation to help improve bone mineralization.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Engineered polycaprolactone-magnesium hybrid biodegradable porous scaffold for bone tissue engineering
    Wong, Hoi Man
    Chu, Paul K.
    Leung, Frankie K. L.
    Cheung, Kenneth M. C.
    Luk, Keith D. K.
    Yeung, Kelvin W. K.
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2014, 24 (05) : 561 - 567
  • [22] Preparation and separation performance of biomimetic polycaprolactone/ graphene oxide composite membrane
    Li, Bingfan
    Qi, Bo
    Han, Jiang
    Yang, Chao
    Qian, Xiaowen
    Jiao, Tifeng
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 693
  • [23] A polycaprolactone/cuttlefish bone-derived hydroxyapatite composite porous scaffold for bone tissue engineering
    Kim, Beom-Su
    Yang, Sun-Sik
    Lee, Jun
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2014, 102 (05) : 943 - 951
  • [24] Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering
    Jiang Liuyun
    Li Yubao
    Xiong Chengdong
    Journal of Biomedical Science, 16
  • [25] Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering
    Jiang Liuyun
    Li Yubao
    Xiong Chengdong
    JOURNAL OF BIOMEDICAL SCIENCE, 2009, 16
  • [26] Preparation and characterization of graphene oxide aerogel/gelatin as a hybrid scaffold for application in nerve tissue engineering
    Zeinali, Khdijeh
    Khorasani, Mohammad Taghi
    Rashidi, Alimorad
    Joupari, Morteza Daliri
    INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2021, 70 (10) : 674 - 683
  • [27] A graded graphene oxide-hydroxyapatite/silk fibroin biomimetic scaffold for bone tissue engineering
    Wang, Qian
    Chu, Yanyan
    He, Jianxin
    Shao, Weili
    Zhou, Yuman
    Qi, Kun
    Wang, Lidan
    Cui, Shizhong
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2017, 80 : 232 - 242
  • [28] Fabrication and characterization of PHEMA-gelatin scaffold enriched with graphene oxide for bone tissue engineering
    Tabatabaee, Sara
    Baheiraei, Nafiseh
    Salehnia, Mojdeh
    JOURNAL OF ORTHOPAEDIC SURGERY AND RESEARCH, 2022, 17 (01)
  • [29] Morphological and Molecular Analysis of Osteoblasts Differentiated from Mesenchymal Stem Cells in Polycaprolactone/Magnesium Oxide/Graphene Oxide Scaffold
    Niknam, Z.
    Zali, H.
    Mansouri, V
    Tavirani, M. Rezaei
    Omidi, M.
    INTERNATIONAL JOURNAL OF ORGAN TRANSPLANTATION MEDICINE, 2019, 10 (04): : 171 - 182
  • [30] Development of a tricomponent composite graphene oxide-chitosan-hydroxyapatite for bone tissue engineering
    Ravichandran, Y. Dominic
    Villaret, T.
    Rajesh, R.
    JOURNAL OF THE INDIAN CHEMICAL SOCIETY, 2015, 92 (05) : 649 - 651