Reconstruction of a time-dependent potential in a pseudo-hyperbolic equation

被引:0
|
作者
Tekin, Ibrahim [1 ]
机构
[1] Department of Mathematics, Bursa Technical University, Yildirim-Bursa,16310, Turkey
关键词
Inverse problems;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, an initial boundary value problem for a pseudo-hyperbolic equation is considered. Giving an over-determination condition, a timedependent potential is determined and existence and uniqueness theorem for small times is proved. Also, theorem of the conventional stability of the solution of the inverse problem is given. © 2019, Politechnica University of Bucharest. All rights reserved.
引用
收藏
页码:115 / 124
相关论文
共 50 条
  • [21] Quasicircles and quasiperiodic surfaces in pseudo-hyperbolic spaces
    François Labourie
    Jérémy Toulisse
    Inventiones mathematicae, 2023, 233 : 81 - 168
  • [22] SEMILINEAR DEGENERATE HYPERBOLIC SYSTEMS COUPLED WITH PSEUDO-HYPERBOLIC SYSTEMS
    ZHOU, YL
    FU, HY
    KEXUE TONGBAO, 1983, 28 (12): : 1586 - 1590
  • [23] PSEUDO-HYPERBOLIC CURVES IN Ev5
    Saglam, Derya
    Boyacioglu Kalkan, Ozgur
    ARS COMBINATORIA, 2014, 113 : 105 - 110
  • [24] Inverse source problem for the hyperbolic equation with a time-dependent principal part
    Jiang, Daijun
    Liu, Yikan
    Yamamoto, Masahiro
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (01) : 653 - 681
  • [25] Stability for a nonlinear hyperbolic equation with time-dependent coefficients and boundary damping
    Cavalcanti, Marcelo Moreira
    Domingos Cavalcanti, Valeria Neves
    Vicente, Andre
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (06):
  • [26] Stability for a nonlinear hyperbolic equation with time-dependent coefficients and boundary damping
    Marcelo Moreira Cavalcanti
    Valéria Neves Domingos Cavalcanti
    André Vicente
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [27] Electric and magnetic fluxes for pseudo-hyperbolic magnetic particles
    Korpinar, Talat
    Korpinar, Zeliha
    Sazak, Ahmet
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (02)
  • [28] On the Time-Dependent Solutions of the Schrodinger Equation. I. The Linear Time-Dependent Potential
    Palma, A.
    Villa, M.
    Sandoval, L.
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2011, 111 (7-8) : 1646 - 1650
  • [29] On the scattering operator for the Schrodinger equation with a time-dependent potential
    Jensen, A
    MATHEMATICAL RESULTS IN QUANTUM MECHANICS, 1999, 108 : 91 - 97
  • [30] Reconstruction of a time-dependent potential from wave measurements
    Gerken, Thies
    Lechleiter, Armin
    INVERSE PROBLEMS, 2017, 33 (09)