Single-cell and spatial transcriptomics: Bridging current technologies with long-read sequencing

被引:5
|
作者
Yuan, Chengwei Ulrika [1 ,2 ]
Quah, Fu Xiang [1 ]
Hemberg, Martin [3 ,4 ]
机构
[1] Univ Cambridge, Dept Biochem, Cambridge, England
[2] Wellcome Sanger Inst, Wellcome Genome Campus, Cambridge, England
[3] Brigham & Womens Hosp, Gene Lay Inst, Boston, MA 02115 USA
[4] Harvard Med Sch, Boston, MA 02115 USA
基金
英国惠康基金;
关键词
GENOME-WIDE EXPRESSION; RNA-SEQ; GENE-EXPRESSION; DNA; AMPLIFICATION; INFERENCE; TISSUE; IDENTIFICATION; VISUALIZATION; NUCLEOTIDE;
D O I
10.1016/j.mam.2024.101255
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Single -cell technologies have transformed biomedical research over the last decade, opening up new possibilities for understanding cellular heterogeneity, both at the genomic and transcriptomic level. In addition, more recent developments of spatial transcriptomics technologies have made it possible to profile cells in their tissue context. In parallel, there have been substantial advances in sequencing technologies, and the third generation of methods are able to produce reads that are tens of kilobases long, with error rates matching the second generation short reads. Long reads technologies make it possible to better map large genome rearrangements and quantify isoform specific abundances. This further improves our ability to characterize functionally relevant heterogeneity. Here, we show how researchers have begun to combine single -cell, spatial transcriptomics, and long -read technologies, and how this is resulting in powerful new approaches to profiling both the genome and the transcriptome. We discuss the achievements so far, and we highlight remaining challenges and opportunities.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Transcriptomics and single-cell RNA-sequencing
    Chambers, Daniel C.
    Carew, Alan M.
    Lukowski, Samuel W.
    Powell, Joseph E.
    RESPIROLOGY, 2019, 24 (01) : 29 - 36
  • [42] Applications of single-cell omics and spatial transcriptomics technologies in gastric cancer (Review)
    Ren, Liping
    Huang, Danni
    Liu, Hongjiang
    Ning, Lin
    Cai, Peiling
    Yu, Xiaolong
    Zhang, Yang
    Luo, Nanchao
    Lin, Hao
    Su, Jinsong
    Zhang, Yinghui
    ONCOLOGY LETTERS, 2024, 27 (04)
  • [43] Adapting long read sequencing technologies for targeted and single cell applications
    Iyer, Shruti
    Goodwin, Sara
    McCombie, W. Richard
    CANCER RESEARCH, 2019, 79 (13)
  • [44] DNA read count calibration for single-molecule, long-read sequencing
    Luis M. M. Soares
    Terrence Hanscom
    Donald E. Selby
    Samuel Adjei
    Wei Wang
    Dariusz Przybylski
    John F. Thompson
    Scientific Reports, 12
  • [45] DNA read count calibration for single-molecule, long-read sequencing
    Soares, Luis M. M.
    Hanscom, Terrence
    Selby, Donald E.
    Adjei, Samuel
    Wang, Wei
    Przybylski, Dariusz
    Thompson, John F.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [46] Identification of cell barcodes from long-read single-cell RNA-seq with BLAZE
    You, Yupei
    Prawer, Yair D. J.
    De Paoli-Iseppi, Ricardo
    Hunt, Cameron P. J.
    Parish, Clare L.
    Shim, Heejung
    Clark, Michael B.
    GENOME BIOLOGY, 2023, 24 (01)
  • [47] The Single-molecule long-read sequencing of Scylla paramamosain
    Haifu Wan
    Xiwei Jia
    Pengfei Zou
    Ziping Zhang
    Yilei Wang
    Scientific Reports, 9
  • [48] Identification of cell barcodes from long-read single-cell RNA-seq with BLAZE
    Yupei You
    Yair D. J. Prawer
    Ricardo De Paoli-Iseppi
    Cameron P. J. Hunt
    Clare L. Parish
    Heejung Shim
    Michael B. Clark
    Genome Biology, 24
  • [49] Genome sequencing using long-read sequencing
    McEwen, Juan Guillermo
    Gomez, Oscar Mauricio
    REVISTA DE LA ACADEMIA COLOMBIANA DE CIENCIAS EXACTAS FISICAS Y NATURALES, 2023, 47 (183): : 439 - 444
  • [50] Single-cell spatial sequencing
    Ornob Alam
    Nature Genetics, 2021, 53 : 1119 - 1119