Single-cell and spatial transcriptomics: Bridging current technologies with long-read sequencing

被引:2
|
作者
Yuan, Chengwei Ulrika [1 ,2 ]
Quah, Fu Xiang [1 ]
Hemberg, Martin [3 ,4 ]
机构
[1] Univ Cambridge, Dept Biochem, Cambridge, England
[2] Wellcome Sanger Inst, Wellcome Genome Campus, Cambridge, England
[3] Brigham & Womens Hosp, Gene Lay Inst, Boston, MA 02115 USA
[4] Harvard Med Sch, Boston, MA 02115 USA
基金
英国惠康基金;
关键词
GENOME-WIDE EXPRESSION; RNA-SEQ; GENE-EXPRESSION; DNA; AMPLIFICATION; INFERENCE; TISSUE; IDENTIFICATION; VISUALIZATION; NUCLEOTIDE;
D O I
10.1016/j.mam.2024.101255
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Single -cell technologies have transformed biomedical research over the last decade, opening up new possibilities for understanding cellular heterogeneity, both at the genomic and transcriptomic level. In addition, more recent developments of spatial transcriptomics technologies have made it possible to profile cells in their tissue context. In parallel, there have been substantial advances in sequencing technologies, and the third generation of methods are able to produce reads that are tens of kilobases long, with error rates matching the second generation short reads. Long reads technologies make it possible to better map large genome rearrangements and quantify isoform specific abundances. This further improves our ability to characterize functionally relevant heterogeneity. Here, we show how researchers have begun to combine single -cell, spatial transcriptomics, and long -read technologies, and how this is resulting in powerful new approaches to profiling both the genome and the transcriptome. We discuss the achievements so far, and we highlight remaining challenges and opportunities.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Identification of cell barcodes from long-read single-cell RNA-seq with BLAZE
    Yupei You
    Yair D. J. Prawer
    Ricardo De Paoli-Iseppi
    Cameron P. J. Hunt
    Clare L. Parish
    Heejung Shim
    Michael B. Clark
    [J]. Genome Biology, 24
  • [42] The Single-molecule long-read sequencing of Scylla paramamosain
    Wan, Haifu
    Jia, Xiwei
    Zou, Pengfei
    Zhang, Ziping
    Wang, Yilei
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [43] Genome sequencing using long-read sequencing
    McEwen, Juan Guillermo
    Gomez, Oscar Mauricio
    [J]. REVISTA DE LA ACADEMIA COLOMBIANA DE CIENCIAS EXACTAS FISICAS Y NATURALES, 2023, 47 (183): : 439 - 444
  • [44] Single-cell long-read sequencing in human cerebral organoids uncovers cell-type-specific and autism-associated exons
    Yang, Yalan
    Yang, Runwei
    Kang, Bowei
    Qian, Sheng
    He, Xin
    Zhang, Xiaochang
    [J]. CELL REPORTS, 2023, 42 (11):
  • [45] Single-cell spatial sequencing
    Alam, Ornob
    [J]. NATURE GENETICS, 2021, 53 (08) : 1119 - 1119
  • [46] Single-cell spatial sequencing
    Ornob Alam
    [J]. Nature Genetics, 2021, 53 : 1119 - 1119
  • [47] scNanoCOOL-seq: a long-read single-cell sequencing method for multi-omics profiling within individual cells
    Jianli Lin
    Xiaohui Xue
    Yan Wang
    Yuan Zhou
    Jian Wu
    Haoling Xie
    Mengya Liu
    Lu Wen
    Fuchou Tang
    [J]. Cell Research, 2023, 33 : 879 - 882
  • [48] scNanoCOOL-seq: a long-read single-cell sequencing method for multi-omics profiling within individual cells
    Lin, Jianli
    Xue, Xiaohui
    Wang, Yan
    Zhou, Yuan
    Wu, Jian
    Xie, Haoling
    Liu, Mengya
    Wen, Lu
    Tang, Fuchou
    [J]. CELL RESEARCH, 2023, 33 (11) : 879 - 882
  • [49] Long-read sequencing goes clinical
    Neveling, K.
    Derks, R.
    Kwint, M.
    van de Vorst, M.
    Gardeitchik, T.
    Nelen, M.
    [J]. EUROPEAN JOURNAL OF HUMAN GENETICS, 2019, 27 : 516 - 516
  • [50] Method of the year: long-read sequencing
    Marx, Vivien
    [J]. NATURE METHODS, 2023, 20 (01) : 6 - 11