Fuzzy support vector regressions for short-term load forecasting

被引:0
|
作者
Luo, Jian [1 ]
Zheng, Yukai [1 ]
Hong, Tao [2 ]
Luo, An [3 ]
Yang, Xueqi [4 ]
机构
[1] Hainan Univ, Int Business Sch, Haikou 570228, Peoples R China
[2] Univ North Carolina Charlotte, Syst Engn & Engn Management Dept, Charlotte, NC 28223 USA
[3] Chinese Acad Surveying & Mapping, Beijing 100036, Peoples R China
[4] North Carolina State Univ, Dept Comp Sci, Raleigh, NC 27695 USA
基金
海南省自然科学基金; 中国国家自然科学基金;
关键词
Electric load forecasting; Fuzzy membership; Support vector regression; Fuzzy SVR; Quantile regression; MODEL;
D O I
10.1007/s10700-024-09425-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The accurate short-term point and probabilistic load forecasts are critically important for efficient operation of power systems and electricity bargain in the market. Fuzzy systems achieved limited success in electric load forecasting. On the other hand, support vector regression models have seldom been part of a winning solution of the electric load forecasting competitions during the last decade. In this paper, we propose a methodology to integrate the fuzzy memberships with support vector regression (SVR) and support vector quantile regression (SVQR) models for short-term point and probabilistic load forecasting, respectively. One fuzzy membership function is proposed to efficiently calculate the relative importance of the observations in the load history. Three SVR and one SVQR models, including L1-norm based SVR, L2-norm based SVR, kernel-free quadratic surface SVR and SVQR models, are utilized to demonstrate the effectiveness of the proposed methodology. For point load forecasting, we compare the proposed fuzzy SVR models with a multiple linear regression, a feed-forward neural network, a fuzzy interaction regression, and four SVR models. For probabilistic load forecasting, the proposed fuzzy SVQR model is compared with a quantile regression model, a quantile regression neural network, and a SVQR model. The results on the data of global energy forecasting competition 2012, demonstrate that the proposed fuzzy component can improve the underlying SVR and SVQR models to outperform their counterparts and commonly-used models for point and probabilistic load forecasting, respectively.
引用
收藏
页码:363 / 385
页数:23
相关论文
共 50 条
  • [41] Very Short-Term Electricity Load Demand Forecasting Using Support Vector Regression
    Setiawan, Anthony
    Koprinska, Irena
    Agelidis, Vassilios G.
    IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 3348 - +
  • [42] Using Least Squares Support Vector Machines in Short-term Electrical Load Forecasting
    Li Jian
    Jiang Zhen-huan
    2009 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE & ENGINEERING (16TH), VOLS I AND II, CONFERENCE PROCEEDINGS, 2009, : 1761 - 1767
  • [43] Short-term Load Forecasting of Local Power Grid Based on Support Vector Machine
    Hua, Jing
    Xiong, Wei
    Zhou, Yanping
    PROCEEDINGS OF THE 2017 7TH INTERNATIONAL CONFERENCE ON EDUCATION, MANAGEMENT, COMPUTER AND SOCIETY (EMCS 2017), 2017, 61 : 1851 - 1856
  • [44] A Comparative Study of Ensemble Support Vector Regression Methods for Short-term Load Forecasting
    Ye, Jianhua
    Yang, Li
    2018 5TH INTERNATIONAL CONFERENCE ON SYSTEMS AND INFORMATICS (ICSAI), 2018, : 139 - 143
  • [45] Combining KPCA with Support Vector Regression Machine for Short-term Electricity load Forecasting
    Zhang, Caiqing
    Lu, Pan
    Liu, Zejian
    2008 INTERNATIONAL CONFERENCE ON RISK MANAGEMENT AND ENGINEERING MANAGEMENT, ICRMEM 2008, PROCEEDINGS, 2008, : 305 - 310
  • [46] Short-term Load Forecasting Approach Based on RS and PSO Support Vector Machine
    Li Jin-ying
    Li Jin-chao
    2008 4TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING, VOLS 1-31, 2008, : 8286 - +
  • [47] Short-term load forecasting using informative vector machine
    Dept. of Electronics and Bioinformatics, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki 214-8571, Japan
    不详
    IEEJ Trans. Power Energy, 2007, 4 (566-572+2):
  • [48] Application of nuSupport Vector Regression in Short-Term Load Forecasting
    Omidi, Adnan
    Barakati, S. Masoud
    Tavakoli, Saeed
    2015 20TH CONFERENCE ON ELECTRICAL POWER DISTRIBUTION NETWORKS CONFERENCE (EPDC), 2015, : 32 - 36
  • [49] Short-Term Load Forecasting Using Informative Vector Machine
    Kurata, Eitaro
    Mori, Hiroyuki
    ELECTRICAL ENGINEERING IN JAPAN, 2009, 166 (02) : 23 - 31
  • [50] FUZZY EXPERT SYSTEMS - AN APPLICATION TO SHORT-TERM LOAD FORECASTING
    HSU, YY
    HO, KL
    IEE PROCEEDINGS-C GENERATION TRANSMISSION AND DISTRIBUTION, 1992, 139 (06) : 471 - 477