Improved solar still productivity using PCM and nano- PCM composites integerated energy storage

被引:1
|
作者
Murali, G. [1 ]
Ramani, P. [2 ]
Murugan, M. [3 ]
Elumalai, P. V. [4 ,7 ,8 ]
Ranjan Goud, Nayani Uday [5 ]
Prabhakar, S. [6 ]
机构
[1] Koneru Lakshmaiah Educ Fdn, Dept Mech Engn, Guntur 522502, Andhra Pradesh, India
[2] SRM Inst Sci & Technol, Dept Elect & Commun Engn, Chennai 600089, Tamilnadu, India
[3] Vivekanandha Coll Engn Women, Dept Biotechnol, Tiruchengode 637205, Tamilnadu, India
[4] GITAM Deemed Univ, Dept Mech Engn, Visakhapatnam 530045, Andhra Pradesh, India
[5] MLR Inst Technol, Dept Aeronaut Engn, Hyderabad, Telangana, India
[6] Wollo Univ, Kombolcha Inst Technol, Dessie, Ethiopia
[7] Saveetha Inst Med & Tech Sci SIMATS, Saveetha Sch Engn, Dept Mech Engn, Chennai 602105, Tamil Nadu, India
[8] Shinawatra Univ, Fac Engn, Bang Toei 12160, Thailand
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Nano-PCM; Energy storage; PCM; Productivity; Efficiency'; PHASE-CHANGE MATERIAL; PERFORMANCE;
D O I
10.1038/s41598-024-65418-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The study investigates the impact of Phase Change Material (PCM) and nano Phase Change Materials (NPCM) on solar still performance. PCM and a blend of NPCM are placed within 12 copper tubes submerged in 1 mm of water to enhance productivity. Thermal performance is assessed across four major scenarios with a fixed water level of 1 mm in the basin. These scenarios include the conventional still, equipped with 12 empty copper rods and 142 g of PCM in each tube, as well as stills with NPCM Samples 1 and 2. Sample 1 contains 0.75% nanoparticle concentration plus 142 g of PCM in the first 6 tubes, while Sample 2 features 2% nanoparticle concentration plus 142 g of PCM in the subsequent 6 tubes. Aluminum oxide (Al2O3) nanoparticles ranging in size from 20 to 30 nm are utilized, with paraffin wax (PW) serving as the latent heat storage (LHS) medium due to its 62 degrees C melting temperature. The experiments are conducted under the local weather conditions of Vaddeswaram, Vijayawada, India (Latitude-80.6480 degrees E, Longitude-16.5062 degrees N). A differential scanning calorimeter (DSC) is utilized to examine the thermal properties, including the melting point and latent heat fusion, of the NPCM compositions. Results demonstrate that the addition of nanoparticles enhances both the specific heat capacity and latent heat of fusion (LHF) in PCM through several mechanisms, including facilitating nucleation, improving energy absorption during phase change, and modifying crystallization behavior within the phase change material. Productivity and efficiency measurements reveal significant improvements: case 1 achieves 2.66 units of daily production and 46.23% efficiency, while cases 2, 3, and 4 yield 3.17, 3.58, and 4.27 units of daily production, respectively. Notably, the utilization of NPCM results in a 60.37% increase overall productivity and a 68.29% improvement in overall efficiency.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Enhancing trays solar still performance using wick finned absorber, nano- enhanced PCM
    Abdullah, A. S.
    Omara, Z. M.
    Essa, Fadl A.
    Alqsair, Umar F.
    Aljaghtham, Mutabe
    Mansir, Ibrahim B.
    Shanmugan, S.
    Alawee, Wissam H.
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (12) : 12417 - 12430
  • [2] Solar Desalination Using Solar Still Enhanced by PCM and Nano Fluid
    Alagu, Karthikeyan
    Reddy, M. Siva
    Kumar, M. Narendra
    Dhas, Anderson Arul Gnana
    3RD INTERNATIONAL CONFERENCE ON FRONTIERS IN AUTOMOBILE AND MECHANICAL ENGINEERING (FAME 2020), 2020, 2311
  • [3] Energy Storage Performance of a PCM in the Solar Storage Tank
    Mao Qianjun
    Chen Hongzhang
    Yang Yizhi
    JOURNAL OF THERMAL SCIENCE, 2019, 28 (02) : 195 - 203
  • [4] Energy Storage Performance of a PCM in the Solar Storage Tank
    Qianjun Mao
    Hongzhang Chen
    Yizhi Yang
    Journal of Thermal Science, 2019, 28 : 195 - 203
  • [5] Energy Storage Performance of a PCM in the Solar Storage Tank
    MAO Qianjun
    CHEN Hongzhang
    YANG Yizhi
    Journal of Thermal Science, 2019, 28 (02) : 195 - 203
  • [6] Storage of Solar Energy in PCM Building Construction
    Benomar, Wafaa
    Zennouhi, Hajar
    Arid, Ahmed
    El Rhafiki, Tarik
    Msaad, Abdelouahad Ait
    Kousksou, Tarik
    PROCEEDINGS OF 2015 3RD IEEE INTERNATIONAL RENEWABLE AND SUSTAINABLE ENERGY CONFERENCE (IRSEC'15), 2015, : 134 - 139
  • [7] A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage
    Rostami, Sara
    Afrand, Masoud
    Shahsavar, Amin
    Sheikholeslami, M.
    Kalbasi, Rasool
    Aghakhani, Saeed
    Shadloo, Mostafa Safdari
    Oztop, Hakan F.
    ENERGY, 2020, 211
  • [8] Experimental Study of Thermal Energy Storage in Solar System Using PCM
    Kanimozhi, B.
    Bapu, B. R. Ramesh
    MATERIALS SCIENCE AND INFORMATION TECHNOLOGY, PTS 1-8, 2012, 433-440 : 1027 - +
  • [9] Solar Still Efficiency Enhancement by Using Graphene Oxide/Paraffin Nano-PCM
    Safaei, Mohammad Reza
    Goshayeshi, Hamid Reza
    Chaer, Issa
    ENERGIES, 2019, 12 (10)
  • [10] A Review of a New Advance Technique for Energy Consumption Management by Using Active Solar Still (Nano and PCM Material)
    Patel, Prakash
    Agarwal, Pallavi
    Ansari, Zulfiquar Naimuddin
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2023, 44 (06): : 32 - 48