In this paper, by adding Co, Mo, and Ni metal binder and using spark plasma coupling high -frequency induction (SP - HF) sintering technology, high -entropy (W,Nb,Mo,Ta,Ti)C cermet with good performance was successfully prepared at 1350 degrees C. The sintering temperature was much lower than that of the solid-state sintering temperature adopted for high -entropy carbide ceramics (about 2000 degrees C) while maintaining high hardness and fracture toughness. The effects of sintering temperature, holding time and sintering pressure on the mechanical properties of high -entropy (W,Nb,Mo,Ta,Ti)C cermet were investigated. The experimental results show that the SP-HF sintering can promote the liquid phase flow inside the high -entropy (W,Nb,Mo,Ta,Ti)C cermet and improve the density. The high -frequency induction sintering effect of the high -intensity magnetic metal binder phase (Co, Ni) promotes the rapid diffusion of the constituent phases using the vacancy mechanism and the metal liquid phase, which helps to form a high -entropy cermet solid solution at a lower temperature. The different highentropy effects of the inner and outer layers of high -entropy (W,Nb,Mo,Ta,Ti)C cermet materials play a role in strengthening and toughening the materials, and effective solid solution strengthening is the main reason for improving mechanical properties. The mechanical properties of high -entropy (W,Nb,Mo,Ta,Ti)C cermet are the optimized at 1350 degrees C, holding time of 8 min, and sintering pressure of 35 MPa. The Vickers hardness, fracture toughness, and flexural strength are 18.38 +/- 0.19 GPa, 9.65 +/- 0.25 MPa center dot m 1/2 and 970 +/- 30 MPa, Vickers hardness was measured at 49 N load.