Synthesis and performance improvement mechanism of high-efficiency B doped LiNi0.5Co0.2Mn0.3O2 cathode materials for Li-ion batteries

被引:0
|
作者
Zhu H. [1 ]
Yu H. [1 ]
Jiang Q. [1 ]
Yang Z. [1 ]
Jiang H. [1 ]
Li C. [1 ]
机构
[1] Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai
来源
Huagong Xuebao/CIESC Journal | 2021年 / 72卷 / 01期
关键词
B doping; High voltage; Li-ion batteries; LiNi[!sub]0.5[!/sub]Co[!sub]0.2[!/sub]Mn[!sub]0.3[!/sub]O[!sub]2[!/sub;
D O I
10.11949/0438-1157.20200836
中图分类号
学科分类号
摘要
High-efficiency doping of strong-bonding energy heteroatoms is an effective strategy to stabilize high-voltage LiNi0.5Co0.2Mn0.3O2 (NCM) ternary cathode materials and improve their electrochemical performance. Herein, a strategy with boron-containing precursor surface enrichment and diffusion-reinforcement by high-temperature calcination is proposed to construct high-efficiency B-doped LiNi0.5Co0.2Mn0.3O2 cathode material (NCM-B). The high B-O bond energy (809 kJ•mol-1) greatly inhibits the evolution of oxygen atoms, hence steadying the oxygen ion framework. Moreover, the LiO2-B2O3 coating layer with high Li+ conductivity can stabilize the electrode-electrolyte interface. Compared with pure NCM, the NCM-B exhibits a high reversible capacity of 193.7 mA•h•g-1 within 3.0-4.5 V and delivers a superior high-rate performance of 120 mA•h•g-1 at 10 C (only 78.2 mA•h•g-1 for NCM). Furthermore, the capacity retention after 100 cycles at 1 C can be improved from 73% to 90%. The present surface-enrichment and diffusion-reinforcement strategy is expected to realize high-efficiency doping of other cathode materials. © 2021, Editorial Board of CIESC Journal. All right reserved.
引用
收藏
页码:609 / 618
页数:9
相关论文
共 36 条
  • [21] Jiang Y, Liu Z, Zhang Y, Et al., Full-gradient structured LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> cathode material with improved rate and cycle performance for lithium ion batteries, Electrochem. Acta, 309, pp. 74-85, (2019)
  • [22] Xie H L, Li C L, Kan W H, Et al., Consolidating the grain boundary of garnet electrolyte LLZTO with Li<sub>3</sub>BO<sub>3</sub> for high performance LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub>/LiFePO<sub>4</sub> hybrid solid batteries, J. Mater. Chem. A, 7, 36, pp. 20965-20965, (2019)
  • [23] Kang S, Kim J, Stoll M, Et al., Layered Li(Ni<sub>0.5-x</sub>Mn<sub>0.5-x</sub>M'<sub>2x</sub>)O<sub>2</sub>, (M'=Co, Al, Ti, x = 0, 0.025) cathode materials for Li-ion rechargeable batteries, J. Power Sources, 112, pp. 41-48, (2002)
  • [24] Xie H, Du K, Hu G, Et al., Synthesis of LiNi<sub>0.8</sub>Co<sub>0.15</sub>Al<sub>0.05</sub>O<sub>2</sub> with 5-sulfosalicylic acid as a chelating agent and its electrochemical properties, J. Mater. Chem. A, 3, 40, pp. 20236-20243, (2015)
  • [25] Geng S J, Huang Q S, Zhu Q H, Et al., Investigation on synthesis conditions of LiNi<sub>1-x-y</sub>Co<sub>x</sub>Mn<sub>y</sub>O<sub>2</sub> cathode material via co-precipitation, CIESC Journal, 69, 1, pp. 175-187, (2018)
  • [26] Li J Y, Li W D, Wang S Y, Et al., Facilitating the operation of lithium-ion cells with high-nickel layered oxide cathodes with a small dose of aluminum, Chem. Mater, 30, 9, pp. 3101-3109, (2018)
  • [27] Ryu H H, Park K J, Yoon D R, Et al., Li[Ni<sub>0.9</sub>Co<sub>0.09</sub>W<sub>0.01</sub>]O<sub>2</sub>: a new type of layered oxide cathode with high cycling stability, Adv. Energy Mater, 9, 44, (2019)
  • [28] Hou P, Li F, Sun Y, Et al., Multishell precursors facilitated synthesis of concentration-gradient nickel-rich cathodes for long-life and high-rate lithium-ion batteries, ACS Appl. Mater. Interfaces, 10, 29, pp. 24508-24515, (2018)
  • [29] Deng Z N, Jiang H, Hu Y J, Et al., 3D ordered macroporous MoS<sub>2</sub>@C nanostructure for flexible Li-ion batteries, Adv. Mater, 29, 10, (2017)
  • [30] Jiang Q Q, Yu H F, Hu Y J, Et al., Exposed surface engineering of high-voltage LiNi<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>O<sub>2</sub> cathode materials enables high-rate and durable Li-ion batteries, Ind. Eng. Chem. Res, 58, 51, pp. 23099-23105, (2019)