An adaptive finite element DtN method for the acoustic-elastic interaction problem

被引:2
|
作者
Lin, Lei [1 ]
Lv, Junliang [1 ]
Li, Shuxin [1 ]
机构
[1] Jilin Univ, Sch Math, Qianjin St, Changchun 130012, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
Acoustic-elastic interaction problem; Adaptive finite element method; Transparent boundary condition; A posteriori error estimate; PERFECTLY MATCHED LAYER; DIFFRACTION GRATING PROBLEM; WAVE SCATTERING PROBLEM; BOUNDARY-CONDITIONS; PML METHOD; FREQUENCY SCATTERING; NUMERICAL-SOLUTION; ABSORBING LAYERS; CONVERGENCE; FEM;
D O I
10.1007/s10444-024-10160-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the scattering of a time-harmonic acoustic incident wave by a bounded, penetrable and isotropic elastic solid, which is immersed in a homogeneous compressible air/fluid. By the Dirichlet-to-Neumann (DtN) operator, an exact transparent boundary condition is introduced and the model is formulated as a boundary value problem of acoustic-elastic interaction. Based on a duality argument technique, an a posteriori error estimate is derived for the finite element method with the truncated DtN boundary operator. The a posteriori error estimate consists of the finite element approximation error and the truncation error of the DtN boundary operator, where the latter decays exponentially with respect to the truncation parameter. An adaptive finite element algorithm is proposed for solving the acoustic-elastic interaction problem, where the truncation parameter is determined through the truncation error and the mesh elements for local refinements are chosen through the finite element discretization error. Numerical experiments are presented to demonstrate the effectiveness of the proposed method.
引用
收藏
页数:29
相关论文
共 50 条
  • [41] Finite element analysis of elastic solid/Stokes flow interaction problem
    Myung, Jin Suk
    Hwang, Wook Ryol
    Won, Ho Youn
    Ahn, Kyung Hyun
    Lee, Seung Jong
    KOREA-AUSTRALIA RHEOLOGY JOURNAL, 2007, 19 (04) : 233 - 242
  • [42] Error estimates of the finite element method for the exterior Helmholtz problem with a modified DtN boundary condition
    Koyama, Daisuke
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 232 (01) : 109 - 121
  • [43] Spectral Element Method for the Elastic/Acoustic Waveguide Problem in Anisotropic Metamaterials
    Ge, An Qi
    Zhuang, Ming Wei
    Liu, Jie
    Liu, Qing Huo
    IEEE ACCESS, 2021, 9 : 153824 - 153837
  • [44] OPTIMALITY OF A STANDARD ADAPTIVE FINITE ELEMENT METHOD FOR THE STOKES PROBLEM
    Feischl, Michael
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (03) : 1124 - 1157
  • [45] Adaptive Quadratic Finite Element Method for the Unilateral Contact Problem
    Khandelwal, Rohit
    Porwal, Kamana
    Wadhawan, Tanvi
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 96 (01)
  • [46] An adaptive stabilized finite element method for the generalized Stokes problem
    Araya, Rodolfo
    Barrenechea, Gabriel R.
    Poza, Abner
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 214 (02) : 457 - 479
  • [47] Adaptive Finite Element Method for an Electromagnetic Coefficient Inverse Problem
    Beilina, L.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 1052 - 1055
  • [48] The adaptive finite element method for the P-Laplace problem
    Liu, D. J.
    Chen, Z. R.
    APPLIED NUMERICAL MATHEMATICS, 2020, 152 : 323 - 337
  • [49] Adaptive Quadratic Finite Element Method for the Unilateral Contact Problem
    Rohit Khandelwal
    Kamana Porwal
    Tanvi Wadhawan
    Journal of Scientific Computing, 2023, 96
  • [50] A convergent adaptive finite element method for an optimal design problem
    Bartels, Soren
    Carstensen, Carsten
    NUMERISCHE MATHEMATIK, 2008, 108 (03) : 359 - 385