Prediction of Aureococcus anophageffens using machine learning and deep learning

被引:0
|
作者
Niu, Jie [1 ]
Lu, Yanqun [2 ]
Xie, Mengyu [2 ]
Ou, Linjian [2 ]
Cui, Lei [2 ]
Qiu, Han [3 ]
Lu, Songhui [2 ,4 ]
机构
[1] Guizhou Univ, Coll Resources & Environm Engn, Guiyang 550025, Peoples R China
[2] Jinan Univ, Coll Life Sci & Technol, Sch Environm, Guangzhou 510632, Peoples R China
[3] Pacific Northwest Natl Lab, Atmospher Climate & Earth Sci Div, Richland, WA USA
[4] Southern Marine Sci & Engn Guangdong Lab, Zhuhai 519000, Peoples R China
关键词
Aureococcus anophagefferens; Brown tide; Machine learning; Deep learning; Variable importance analysis; RANDOM FOREST; COASTAL WATERS; PHYTOPLANKTON; QINHUANGDAO; COMMUNITY; NITROGEN; MODELS; BLOOMS;
D O I
10.1016/j.marpolbul.2024.116148
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The recurrent brown tide phenomenon, attributed to Aureococcus anophagefferens (A. anophagefferens), constitutes a significant threat to the Qinhuangdao sea area in China, leading to pronounced ecological degradation and substantial economic losses. This study utilized machine learning and deep learning techniques to predict A. anophagefferens population density, aiming to elucidate the occurrence mechanism and influencing factors of brown tide. Specifically, Random Forest (RF) algorithm was utilized to impute missing water quality data, facilitating its direct application in subsequent algal population prediction models. The results revealed that all four models-RF, Support Vector Regression (SVR), Multilayer Perceptron (MLP), and Convolutional Neural Network (CNN)-exhibited high accuracy in predicting A. anophagefferens population densities, with R2 values exceeding 0.75. RF, in particular, showed exceptional accuracy and reliability, with an R2 value surpassing 0.8. Additionally, the study ascertained five critical factors influencing A. anophagefferens population density: ammonia nitrogen, pH, total nitrogen, temperature, and silicate.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Survival prediction of glioblastoma patients using modern deep learning and machine learning techniques
    Samin Babaei Rikan
    Amir Sorayaie Azar
    Amin Naemi
    Jamshid Bagherzadeh Mohasefi
    Habibollah Pirnejad
    Uffe Kock Wiil
    Scientific Reports, 14
  • [32] Review of machine learning and deep learning models for toxicity prediction
    Guo, Wenjing
    Liu, Jie
    Dong, Fan
    Song, Meng
    Li, Zoe
    Khan, Md Kamrul Hasan
    Patterson, Tucker A.
    Hong, Huixiao
    EXPERIMENTAL BIOLOGY AND MEDICINE, 2023, 248 (21) : 1952 - 1973
  • [33] Cardiovascular diseases prediction by machine learning incorporation with deep learning
    Subramani, Sivakannan
    Varshney, Neeraj
    Anand, M. Vijay
    Soudagar, Manzoore Elahi M.
    Al-keridis, Lamya Ahmed
    Upadhyay, Tarun Kumar
    Alshammari, Nawaf
    Saeed, Mohd
    Subramanian, Kumaran
    Anbarasu, Krishnan
    Rohini, Karunakaran
    FRONTIERS IN MEDICINE, 2023, 10
  • [34] Application of machine learning and deep learning for the prediction of HIV/AIDS
    Alehegn, Minyechil
    HIV & AIDS REVIEW, 2022, 21 (01): : 17 - 23
  • [35] Prediction of gestational diabetes using deep learning and Bayesian optimization and traditional machine learning techniques
    Kurt, Burcin
    Gurlek, Beril
    Keskin, Seda
    Ozdemir, Sinem
    Karadeniz, Ozlem
    Kirkbir, Ilknur Bucan
    Kurt, Tugba
    Unsal, Serbülent
    Kart, Cavit
    Baki, Neslihan
    Turhan, Kemal
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2023, 61 (07) : 1649 - 1660
  • [36] Prediction of lactate concentrations after cardiac surgery using machine learning and deep learning approaches
    Kobayashi, Yuta
    Peng, Yu-Chung
    Yu, Evan
    Bush, Brian
    Jung, Youn-Hoa
    Murphy, Zachary
    Goeddel, Lee
    Whitman, Glenn
    Venkataraman, Archana
    Brown, Charles H.
    FRONTIERS IN MEDICINE, 2023, 10
  • [37] Stock Price Prediction Using Time Series, Econometric, Machine Learning, and Deep Learning Models
    Chatterjee, Ananda
    Bhowmick, Hrisav
    Sen, Jaydip
    2021 IEEE Mysore Sub Section International Conference, MysuruCon 2021, 2021, : 289 - 296
  • [38] An Analytic Review on Stock Market Price Prediction using Machine Learning and Deep Learning Techniques
    Rath S.
    Das N.R.
    Pattanayak B.K.
    Recent Patents on Engineering, 2024, 18 (02): : 88 - 104
  • [39] In silico prediction of ocular toxicity of compounds using explainable machine learning and deep learning approaches
    Zhou, Yiqing
    Wang, Ze
    Huang, Zejun
    Li, Weihua
    Chen, Yuanting
    Yu, Xinxin
    Tang, Yun
    Liu, Guixia
    JOURNAL OF APPLIED TOXICOLOGY, 2024, 44 (06) : 892 - 907
  • [40] A Study of Disease Prediction on Weighted Symptom Data Using Deep Learning and Machine Learning Algorithms
    Colak, Melike
    Sivri, Talya Tumer
    Akman, Nergis Pervan
    Berkol, Ali
    Ekici, Yahya
    2022 INTERNATIONAL CONFERENCE ON THEORETICAL AND APPLIED COMPUTER SCIENCE AND ENGINEERING (ICTASCE), 2022, : 116 - 119