Critical challenges and solutions: quasi-solid-state electrolytes for zinc-based batteries

被引:7
|
作者
Ge, Haoyang [1 ]
Xie, Xian [2 ]
Xie, Xuesong [1 ]
Zhang, Bingyao [1 ]
Li, Shenglong [1 ]
Liang, Shuquan [1 ]
Lu, Bingan [3 ]
Zhou, Jiang [1 ]
机构
[1] Cent South Univ, Sch Mat Sci & Engn, Hunan Prov Key Lab Elect Packaging & Adv Funct Mat, Changsha 410083, Peoples R China
[2] City Univ Hong Kong, Dept Mech Engn, Kowloon, Hong Kong 999077, Peoples R China
[3] Hunan Univ, Sch Phys & Elect, Changsha 410082, Peoples R China
基金
中国国家自然科学基金;
关键词
GEL POLYMER ELECTROLYTE; DOUBLE-NETWORK HYDROGELS; ION BATTERIES; ELECTROCHEMICAL CHARACTERIZATION; TOUGH HYDROGELS; ENERGY-STORAGE; LITHIUM-SULFUR; PERFORMANCE; DESIGN; ACID;
D O I
10.1039/d4ee00357h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Zinc-based batteries are regarded as promising power sources for flexible and wearable electronics due to their merits of low cost, durability, intrinsic safety, satisfactory theoretical energy density, and simple structure. Electrolytes, as a key component of batteries, have been widely investigated with the aim of performance improvement and lifespan extension, and the research trend has shifted from liquid-state toward solid-state for higher stability during deformation and easy fabrication and encapsulation. Quasi-solid-state electrolytes (QSSEs) stand out for mitigating the conflict between electrochemical and mechanical performance. Thus, this review comprehensively reviews the progress of QSSEs (including both hydrogel and colloidal electrolytes), starting from the fundamental properties of QSSE materials with tuning mechanisms summarized, followed by the contribution of QSSEs to the performance of batteries with engineering strategies illustrated, finally extending to modern applications and evaluation protocols with wearable and biocompatible electronics included. So far, the research on functional hydrogel electrolytes is still in its infancy, and the practical application of colloidal electrolytes needs further study. Finally, we summarize those unsolved challenges in current studies and provide guidelines for future research with the hope of accelerating the development and practical application of QSSEs. QSSEs are emerging in aqueous ZBs and modern applications. By summarizing the fundamentals of materials properties, battery performance and applications of QSSEs, this review provides insight into the future development and optimization of ZBs in wider application fields.
引用
收藏
页码:3270 / 3306
页数:37
相关论文
共 50 条
  • [41] Deep dive into anionic metal-organic frameworks based quasi-solid-state electrolytes
    Hou, Tingzheng
    Xu, Wentao
    [J]. JOURNAL OF ENERGY CHEMISTRY, 2023, 81 : 313 - 320
  • [42] Charge-Delocalized Triptycene-Based Ionic Porous Organic Polymers as Quasi-Solid-State Electrolytes for Lithium Metal Batteries
    Yuan, Yufei
    Wang, Dan-Dong
    Zhang, Zhengyang
    Bang, Ki-Taek
    Wang, Rui
    Chen, Huanhuan
    Wang, Yanming
    Kim, Yoonseob
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (34) : 44957 - 44966
  • [43] An ultrathin natural cellulose based hydrogel membrane for the high-performance quasi-solid-state zinc-ion batteries
    Zheng, Zhuoyuan
    Yan, Shiye
    Zhang, Yifan
    Zhang, Xingpeng
    Zhou, Jie
    Ye, Jilei
    Zhu, Yusong
    [J]. CHEMICAL ENGINEERING JOURNAL, 2023, 475
  • [44] Regulating zinc metal anodes via novel electrolytes in rechargeable zinc-based batteries
    Li, ChenChen
    Wu, Qian
    Ma, Jian
    Pan, Hongge
    Liu, Yanxia
    Lu, Yingying
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (28) : 14692 - 14708
  • [45] Deep dive into anionic metal-organic frameworks based quasi-solid-state electrolytes
    Tingzheng Hou
    Wentao Xu
    [J]. Journal of Energy Chemistry, 2023, (06) : 313 - 320
  • [46] Efficient cathodes for quasi-solid-state aluminum-air batteries
    Gaele, Maria F.
    Califano, Valeria
    Di Palma, Tonia M.
    [J]. IONICS, 2023, 29 (04) : 1447 - 1458
  • [47] Erratum to: Nanocomposite quasi-solid-state electrolyte for highsafety lithium batteries
    Hyunji Choi
    Hyun Woo Kim
    Jae-Kwang Kim
    Young Jun Lim
    Youngsik Kim
    Jou-Hyeon Ahn
    [J]. Nano Research, 2017, 10 : 3619 - 3619
  • [48] Efficient cathodes for quasi-solid-state aluminum-air batteries
    Maria F. Gaele
    Valeria Califano
    Tonia M. Di Palma
    [J]. Ionics, 2023, 29 : 1447 - 1458
  • [49] Innovative zinc-based batteries
    Borchers, Niklas
    Clark, Simon
    Horstmann, Birger
    Jayasayee, Kaushik
    Juel, Mari
    Stevens, Philippe
    [J]. JOURNAL OF POWER SOURCES, 2021, 484
  • [50] Photoresponsive Zinc-Based Batteries
    Lin, Xiaofeng
    Liu, Zilong
    Wang, Xiaotong
    Li, Ping
    Yu, Dingshan
    [J]. SMALL SCIENCE, 2023, 3 (09):