Big data-driven water research towards metaverse

被引:1
|
作者
Uchimiya, Minori [1 ]
机构
[1] USDA, ARS, Southern Reg Res Ctr, 1100 Allen Toussaint Blvd, New Orleans, LA 70124 USA
关键词
Data mining; Omics; Remote sensing; Sensor; Chemoinformatics; CHLOROPHYLL FLUORESCENCE; MICROBIAL COMMUNITIES; REDUCTION; MECHANISM; QUALITY;
D O I
10.1016/j.wse.2024.02.001
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
Although big data is publicly available on water quality parameters, virtual simulation has not yet been adequately adapted in environmental chemistry research. Digital twin is different from conventional geospatial modeling approaches and is particularly useful when systematic laboratory/field experiment is not realistic (e.g., climate impact and water-related environmental catastrophe) or difficult to design and monitor in a real time (e.g., pollutant and nutrient cycles in estuaries, soils, and sediments). Data-driven water research could realize early warning and disaster readiness simulations for diverse environmental scenarios, including drinking water contamination. (c) 2024 Hohai University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:101 / 107
页数:7
相关论文
共 50 条
  • [41] Prospects and challenges of Metaverse application in data-driven intelligent transportation systems
    Njoku, Judith Nkechinyere
    Nwakanma, Cosmas Ifeanyi
    Amaizu, Gabriel Chukwunonso
    Kim, Dong-Seong
    [J]. IET INTELLIGENT TRANSPORT SYSTEMS, 2023, 17 (01) : 1 - 21
  • [42] Big Data Analysis with Momentum Strategy on Data-driven Trading
    Gao, Xiangyu
    Qiu, Meikang
    He, Zhen
    [J]. 19TH IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL AND DISTRIBUTED PROCESSING WITH APPLICATIONS (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2021), 2021, : 1328 - 1335
  • [43] Data-Driven Artificial Intelligence for Calibration of Hyperspectral Big Data
    Sagan, Vasit
    Maimaitijiang, Maitiniyazi
    Paheding, Sidike
    Bhadra, Sourav
    Gosselin, Nichole
    Burnette, Max
    Demieville, Jeffrey
    Hartling, Sean
    LeBauer, David
    Newcomb, Maria
    Pauli, Duke
    Peterson, Kyle T.
    Shakoor, Nadia
    Stylianou, Abby
    Zender, Charles S.
    Mockler, Todd C.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [44] Holistic data-driven requirements elicitation in the big data era
    Aron Henriksson
    Jelena Zdravkovic
    [J]. Software and Systems Modeling, 2022, 21 : 1389 - 1410
  • [45] Holistic data-driven requirements elicitation in the big data era
    Henriksson, Aron
    Zdravkovic, Jelena
    [J]. SOFTWARE AND SYSTEMS MODELING, 2022, 21 (04): : 1389 - 1410
  • [46] Big Data Analytics in Education: A Data-Driven Literature Review
    Shabihi, Negar
    Kim, Mi Song
    [J]. IEEE 21ST INTERNATIONAL CONFERENCE ON ADVANCED LEARNING TECHNOLOGIES (ICALT 2021), 2021, : 154 - 156
  • [47] A Data-Driven Framework for Business Analytics in the Context of Big Data
    Lu, Jing
    [J]. NEW TRENDS IN DATABASES AND INFORMATION SYSTEMS, ADBIS 2018, 2018, 909 : 339 - 351
  • [48] A Data-Driven Sequential Localization Framework for Big Telco Data
    Zhu, Fangzhou
    Yuan, Mingxuan
    Xie, Xike
    Wang, Ting
    Zhao, Shenglin
    Rao, Weixiong
    Zeng, Jia
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021, 33 (08) : 3007 - 3019
  • [49] Research on Big Data-Driven Urban Traffic Flow Prediction Based on Deep Learning
    Qin, Xiaoan
    [J]. INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGIES AND SYSTEMS APPROACH, 2023, 16 (01)
  • [50] Big data-driven research on the interaction of human mobility pattern and urban spatial structure
    Cao J.
    [J]. Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2021, 50 (06): : 849