Klein-Gordon Oscillator In Dynamical Noncommutative Space

被引:1
|
作者
Haouam, Ilyas [1 ]
机构
[1] Univ Freres Mentouri, Lab Phys Math & Phys Subat LPMPS, Constantine 25000, Algeria
关键词
Dynamical noncommutative space; Time-independent perturbation theory; tau-deformed space; Klein-Gordonoscillator; EQUATION; QUANTUM; ENERGIES;
D O I
10.1007/s10773-024-05696-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper aims to investigate the two-dimensional Klein-Gordon oscillator system in a dynamical noncommutative (DNC) space. We address the deformed system using the time-independent perturbation theory, where the energy eigenvalues and eigenvectors are obtained in relativistic and nonrelativistic regimes, also the effects of the dynamical and non-dynamical noncommutative settings are successfully examined. Then some numerical results are given and used to extensively study the conduct of the system under the various considerations. Note that in the DNC space, the space-space commutation relations and noncommutative parameter are position-dependent. The first-order corrections to the eigensystem are found, then, it is shown that the energy shift depends on the DNC parameter tau\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}. Moreover, using the accuracy of energy measurement, we put an upper bound on the parameter tau\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}. Knowing that, with a set of two-dimensional Bopp-shift transformation, we link the noncommutative problem to the standard commutative one.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Klein-Gordon oscillator in the presence of the minimal momentum
    Chung, Won Sang
    Hassanabadi, Hassan
    Farahani, Nasrin
    [J]. MODERN PHYSICS LETTERS A, 2019, 34 (25)
  • [22] PT-Symmetric Klein-Gordon Oscillator
    Cheng, Jian-Yuan
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (01) : 228 - 232
  • [23] THE DYNAMICAL DIFFERENTIAL FORMS OF THE KLEIN-GORDON FIELD
    ARENS, R
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1983, 7 (02) : 117 - 119
  • [24] Statistical Properties of the 1D Space Fractional Klein-Gordon Oscillator
    Korichi, Nabil
    Boumali, Abdelmalek
    Chargui, Yassine
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 2022, 206 (1-2) : 32 - 50
  • [25] Klein-Gordon oscillator in a global monopole space-time with rainbow gravity
    de Montigny, Marc
    Pinfold, James
    Zare, Soroush
    Hassanabadi, Hassan
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 137 (01):
  • [26] The Klein-Gordon oscillator and the proper-time formalism in a Rigged Hilbert Space
    Grunfeld, AG
    Rocca, MC
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1998, 113 (11): : 1351 - 1359
  • [27] NONCOMMUTATIVE INTEGRATION OF KLEIN-GORDON AND DIRAC EQUATIONS WITH MOVEMENT GROUP
    SHAPOVALOV, AV
    SHIROKOV, IV
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1991, 34 (05): : 33 - 38
  • [28] Effects of Yukawa confining potential on Klein-Gordon oscillator
    Ikot, A. N.
    Amadi, P. O.
    Okorie, U. S.
    Horchani, R.
    Okpara, N.
    Obagboye, L.
    [J]. EPL, 2023, 142 (05)
  • [29] Dynamical glass in weakly nonintegrable Klein-Gordon chains
    Danieli, Carlo
    Mithun, Thudiyangal
    Kati, Yagmur
    Campbell, David K.
    Flach, Sergej
    [J]. PHYSICAL REVIEW E, 2019, 100 (03)
  • [30] Klein-Gordon oscillator in the presence of a Cornell potential in the cosmic string space-time
    Hosseini, M.
    Hassanabadi, H.
    Hassanabadi, S.
    Sedaghatnia, P.
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2019, 16 (04)