Deep learning for predicting 16S rRNA gene copy number

被引:0
|
作者
Miao, Jiazheng [1 ,3 ]
Chen, Tianlai [1 ,4 ]
Misir, Mustafa [1 ]
Lin, Yajuan [1 ,2 ]
机构
[1] Duke Kunshan Univ, Div Nat & Appl Sci, Suzhou, Peoples R China
[2] Texas A&M Univ Corpus Christi, Dept Life Sci, Corpus Christi, TX 78412 USA
[3] Harvard Med Sch, Dept Biomed Informat, Boston, MA USA
[4] Duke Univ, Dept Biomed Engn, Durham, NC USA
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
CHARACTERS; REGRESSION; DIVERSITY; PARSIMONY; ABUNDANCE; BACTERIA; DATABASE; ARCHAEA; TOOLS; MODEL;
D O I
10.1038/s41598-024-64658-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Culture-independent 16S rRNA gene metabarcoding is a commonly used method for microbiome profiling. To achieve more quantitative cell fraction estimates, it is important to account for the 16S rRNA gene copy number (hereafter 16S GCN) of different community members. Currently, there are several bioinformatic tools available to estimate the 16S GCN values, either based on taxonomy assignment or phylogeny. Here we present a novel approach ANNA16, Artificial Neural Network Approximator for 16S rRNA gene copy number, a deep learning-based method that estimates the 16S GCN values directly from the 16S gene sequence strings. Based on 27,579 16S rRNA gene sequences and gene copy number data from the rrnDB database, we show that ANNA16 outperforms the commonly used 16S GCN prediction algorithms. Interestingly, Shapley Additive exPlanations (SHAP) shows that ANNA16 can identify unexpected informative positions in 16S rRNA gene sequences without any prior phylogenetic knowledge, which suggests potential applications beyond 16S GCN prediction.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Latitudinal variation in the potential activity of Atlantic Ocean bacterioplankton revealed through 16S rRNA and 16S rRNA gene metabarcoding
    Allen, Ro
    Bird, Kimberley E.
    Murrell, J. Colin
    Cunliffe, Michael
    FRONTIERS IN MARINE SCIENCE, 2023, 10
  • [22] Activity profiles for marine sponge-associated bacteria obtained by 16S rRNA vs 16S rRNA gene comparisons
    Janine Kamke
    Michael W Taylor
    Susanne Schmitt
    The ISME Journal, 2010, 4 : 498 - 508
  • [23] Sequence diversity of Neisseria meningitidis 16S rRNA genes and use of 16S rRNA gene sequencing as a molecular subtyping tool
    Sacchi, CT
    Whitney, AM
    Reeves, MW
    Mayer, LW
    Popovic, T
    JOURNAL OF CLINICAL MICROBIOLOGY, 2002, 40 (12) : 4520 - 4527
  • [24] 16S rRNA sequence diversity in Mycobacterium celatum strains caused by presence of two different copies of 16S rRNA gene
    Reischl, U
    Feldmann, K
    Naumann, L
    Gaugler, BJM
    Ninet, B
    Hirschel, B
    Emler, S
    JOURNAL OF CLINICAL MICROBIOLOGY, 1998, 36 (06) : 1761 - 1764
  • [25] Phylogenetic Clustering of Soil Microbial Communities by 16S rRNA but Not 16S rRNA Genes
    DeAngelis, Kristen M.
    Firestone, Mary K.
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2012, 78 (07) : 2459 - 2461
  • [26] Activity profiles for marine sponge-associated bacteria obtained by 16S rRNA vs 16S rRNA gene comparisons
    Kamke, Janine
    Taylor, Michael W.
    Schmitt, Susanne
    ISME JOURNAL, 2010, 4 (04): : 498 - 508
  • [27] Intravaginal microbial flora by the 16S rRNA gene sequencing
    Yoshimura, Kazuaki
    Morotomi, Nobuo
    Fukuda, Kazumasa
    Nakano, Masahiro
    Kashimura, Masamichi
    Hachisuga, Toru
    Taniguchi, Hatsumi
    AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2011, 205 (03) : 235.e1 - 235.e9
  • [28] Genetic environment of 16S rRNA methylase gene rmtD
    Doi, Yohei
    Adams-Haduch, Jennifer M.
    Paterson, David L.
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2008, 52 (06) : 2270 - 2272
  • [29] Transcriptional analysis of the 16S rRNA gene in Rickettsia prowazekii
    Pang, HL
    Winkler, HH
    JOURNAL OF BACTERIOLOGY, 1996, 178 (06) : 1750 - 1755
  • [30] Comparison of 16S rRNA gene sequences of genus Methanobrevibacter
    Abhijit S Dighe
    Kamlesh Jangid
    José M González
    Vyankatesh J Pidiyar
    Milind S Patole
    Dilip R Ranade
    Yogesh S Shouche
    BMC Microbiology, 4