Few-shot Learning for Trajectory-based Mobile Game Cheating Detection

被引:5
|
作者
Su, Yueyang [1 ]
Yao, Di [2 ]
Chu, Xiaokai [1 ]
Li, Wenbin [1 ]
Bi, Jingping [2 ]
Zhao, Shiwei [3 ]
Wu, Runze [3 ]
Zhang, Shize [3 ]
Tao, Jianrong [3 ]
Deng, Hao [3 ]
机构
[1] Univ Chinese Acad Sci, Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
[2] Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
[3] NetEase Fuxi AI Lab, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Mobile Game; Cheating Detection; Few-shot Learning;
D O I
10.1145/3534678.3539157
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the emerging of smartphones, mobile games have attracted billions of players and occupied most of the share for game companies. On the other hand, mobile game cheating, aiming to gain improper advantages by using programs that simulate the players' inputs, severely damages the game's fairness and harms the user experience. Therefore, detecting mobile game cheating is of great importance for mobile game companies. Many PC game-oriented cheating detection methods have been proposed in the past decades, however, they can not be directly adopted in mobile games due to the concern of privacy, power, and memory limitations of mobile devices. Even worse, in practice, the cheating programs are quickly updated, leading to the label scarcity for novel cheating patterns. To handle such issues, we in this paper introduce a mobile game cheating detection framework, namely FCDGame, to detect the cheats under the few-shot learning framework. FCDGame only consumes the screen sensor data, recording users' touch trajectories, which is less sensitive and more general for almost all mobile games. Moreover, a Hierarchical Trajectory Encoder and a Cross-pattern Meta Learner are designed in FCDGame to capture the intrinsic characters of mobile games and solve the label scarcity problem, respectively. Extensive experiments on two real online games show that FCDGame achieves almost 10% improvements in detection accuracy with only few fine-tuned samples.
引用
收藏
页码:3941 / 3949
页数:9
相关论文
共 50 条
  • [31] Few-shot learning for signal detection in wideband spectrograms
    Li, Weihao
    Deng, Wen
    Wang, Keren
    You, Ling
    Huang, Zhitao
    DIGITAL SIGNAL PROCESSING, 2025, 162
  • [32] Fast Hierarchical Learning for Few-Shot Object Detection
    She, Yihang
    Bhat, Goutam
    Danelljan, Martin
    Yu, Fisher
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 1993 - 2000
  • [33] Few-Shot Anomaly Detection in Text with Deviation Learning
    Das, Anindya Sundar
    Ajay, Aravind
    Saha, Sriparna
    Bhuyan, Monowar
    NEURAL INFORMATION PROCESSING, ICONIP 2023, PT II, 2024, 14448 : 425 - 438
  • [34] A Gated Few-shot Learning Model For Anomaly Detection
    Huang, Shaohan
    Liu, Yi
    Fung, Carol
    An, Wanhe
    He, Rong
    Zhao, Yining
    Yang, Hailong
    Luan, Zhongzhi
    2020 34TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN 2020), 2020, : 505 - 509
  • [35] Extensively Matching for Few-shot Learning Event Detection
    Viet Dac Lai
    Dernoncourt, Franck
    Thien Huu Nguyen
    NARRATIVE UNDERSTANDING, STORYLINES, AND EVENTS, 2020, : 38 - 45
  • [36] Federated Few-shot Learning
    Wang, Song
    Fu, Xingbo
    Ding, Kaize
    Chen, Chen
    Chen, Huiyuan
    Li, Jundong
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 2374 - 2385
  • [37] Defensive Few-Shot Learning
    Li, Wenbin
    Wang, Lei
    Zhang, Xingxing
    Qi, Lei
    Huo, Jing
    Gao, Yang
    Luo, Jiebo
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (05) : 5649 - 5667
  • [38] Fractal Few-Shot Learning
    Zhou, Fobao
    Huang, Wenkai
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 35 (11) : 1 - 15
  • [39] Survey on Few-shot Learning
    Zhao K.-L.
    Jin X.-L.
    Wang Y.-Z.
    Ruan Jian Xue Bao/Journal of Software, 2021, 32 (02): : 349 - 369
  • [40] Variational Few-Shot Learning
    Zhang, Jian
    Zhao, Chenglong
    Ni, Bingbing
    Xu, Minghao
    Yang, Xiaokang
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 1685 - 1694