A combinatorial proof of q-log-concavity of q-Eulerian numbers

被引:0
|
作者
Liu, Xinmiao [1 ]
Hou, Jiangxia [1 ]
Liu, Fengxia [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China
来源
RAMANUJAN JOURNAL | 2024年 / 64卷 / 03期
基金
中国国家自然科学基金;
关键词
q-Log-concavity; q-Eulerian number; Lattice path; Injective map;
D O I
10.1007/s11139-024-00841-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Carlitz established a q-analog of the Eulerian numbers A(n,k)(q) and defined the relationship A(n,k)(q) = q (n-k)(n-k+1)/ 2 A(n,k)(& lowast;)(q). In this paper, by using the combinatorial interpretation of A(n,k)(& lowast;)(q) and constructing injective maps, we prove that A(n,k)(& lowast;)(q) and A(n,k)(& lowast;)(q) are q-log-concave, that is, all the coefficients of the polynomials A(n,k)(& lowast;)(q))(2 )- A(n,k-1)(& lowast;)(q) A(n,k+1)*(q) and (A(n,k)(q))(2 )- A(n,k-1)(q) A(n,k+1)(q) are nonnegative for 1<k<n.
引用
收藏
页码:709 / 719
页数:11
相关论文
共 50 条
  • [21] The log-concavity of the q-derangement numbers of type B
    Liu, Eric H.
    Du, Wenjing
    OPEN MATHEMATICS, 2018, 16 : 127 - 132
  • [22] An overpartition analogue of q-binomial coefficients, II: Combinatorial proofs and (q, t)-log concavity
    Dousse, Jehanne
    Kim, Byungchan
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2018, 158 : 228 - 253
  • [23] A recurrence relation for the "inv" analogue of q-Eulerian polynomials
    Chow, Chak-On
    ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):
  • [24] q-Eulerian polynomials: Excedance number and major index
    Shareshian, John
    Wachs, Michelle L.
    ELECTRONIC RESEARCH ANNOUNCEMENTS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 13 : 33 - 45
  • [25] Poset homology of Rees products, and q-Eulerian polynomials
    Shareshian, John
    Wachs, Michelle L.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (02):
  • [26] Generating function for q-Eulerian polynomials and their decomposition and applications
    Alkan, Mustafa
    Simsek, Yilmaz
    FIXED POINT THEORY AND APPLICATIONS, 2013,
  • [27] Q-EULERIAN POLYNOMIALS ARISING FROM COXETER GROUPS
    BRENTI, F
    EUROPEAN JOURNAL OF COMBINATORICS, 1994, 15 (05) : 417 - 441
  • [28] Generating function for q-Eulerian polynomials and their decomposition and applications
    Mustafa Alkan
    Yilmaz Simsek
    Fixed Point Theory and Applications, 2013
  • [29] q-Eulerian polynomials and polynomials with only real zeros
    Ma, Shi-Mei
    Wang, Yi
    ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):
  • [30] A B-spline approach to q-Eulerian polynomials
    Disibuyuk, Cetin
    Ulutas, Sule
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 366