Anomalous node detection in attributed social networks using dual variational autoencoder with generative adversarial networks

被引:11
|
作者
Khan W. [1 ]
Abidin S. [2 ]
Arif M. [3 ]
Ishrat M. [1 ]
Haleem M. [4 ]
Shaikh A.A. [1 ]
Farooqui N.A. [1 ]
Faisal S.M. [5 ]
机构
[1] Koneru Lakshmaiah Education Foundation Vaddeswaram, AP
[2] Aligarh Muslim University, Aligarh
[3] Vellore Institute of Technology, Vellore
[4] Era University, Lucknow
[5] Sandip Foundation, Nashik
来源
Data Science and Management | 2024年 / 7卷 / 02期
关键词
Anomaly detection deep learning; Attributed networks autoencoder; Dual variational-autoencoder; Generative adversarial networks;
D O I
10.1016/j.dsm.2023.10.005
中图分类号
学科分类号
摘要
Many types of real-world information systems, including social media and e-commerce platforms, can be modelled by means of attribute-rich, connected networks. The goal of anomaly detection in artificial intelligence is to identify illustrations that deviate significantly from the main distribution of data or that differ from known cases. Anomalous nodes in node-attributed networks can be identified with greater precision if both graph and node attributes are taken into account. Almost all of the studies in this area focus on supervised techniques for spotting outliers. While supervised algorithms for anomaly detection work well in theory, they cannot be applied to real-world applications owing to a lack of labelled data. Considering the possible data distribution, our model employs a dual variational autoencoder (VAE), while a generative adversarial network (GAN) assures the model is robust to adversarial training. The dual VAEs are used in another capacity: as a fake-node generator. Adversarial training is used to ensure that our latent codes have a Gaussian or uniform distribution. To provide a fair presentation of the graph, the discriminator instructs the generator to generate latent variables with distributions that are more consistent with the actual distribution of the data. Once the model has been learned, the discriminator is used for anomaly detection via reconstruction loss it has been trained to distinguish between the normal and artificial distributions of data. First, using a dual VAE, our model simultaneously captures cross-modality interactions between topological structure and node characteristics and overcomes the problem of unlabeled anomalies, allowing us to better understand the network sparsity and nonlinearity. Second, the proposed model considers the regularization of the latent codes while solving the issue of unregularized embedding techniques that can quickly lead to unsatisfactory representation. Finally, we use the discriminator reconstruction loss for anomaly detection as the discriminator is well-trained to separate the normal and generated data distributions because reconstruction-based loss does not include the adversarial component. Experiments conducted on attributed networks demonstrate the effectiveness of the proposed model and show that it greatly surpasses the previous methods. The area under the curve scores of our proposed model for the BlogCatalog, Flickr, and Enron datasets are 0.83680, 0.82020, and 0.71180, respectively, proving the effectiveness of the proposed model. The result of the proposed model on the Enron dataset is slightly worse than the other models; we attribute this to the dataset's low dimensionality as the most probable explanation. © 2023 Xi'an Jiaotong University
引用
收藏
页码:89 / 98
页数:9
相关论文
共 50 条
  • [21] DeepMoney: counterfeit money detection using generative adversarial networks
    Ali, Toqeer
    Jan, Salman
    Alkhodre, Ahmad
    Nauman, Mohammad
    Amin, Muhammad
    Siddiqui, Muhammad Shoaib
    PEERJ COMPUTER SCIENCE, 2019, 2019 (09)
  • [22] Network intrusion detection based on conditional wasserstein variational autoencoder with generative adversarial network and one-dimensional convolutional neural networks
    Jiaxing He
    Xiaodan Wang
    Yafei Song
    Qian Xiang
    Chen Chen
    Applied Intelligence, 2023, 53 : 12416 - 12436
  • [23] Stock Price Manipulation Detection using Generative Adversarial Networks
    Leangarun, Teema
    Tangamchit, Poj
    Thajchayapong, Suttipong
    2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 2104 - 2111
  • [24] Malware Detection Using Deep Transferred Generative Adversarial Networks
    Kim, Jin-Young
    Bu, Seok-Jun
    Cho, Sung-Bae
    NEURAL INFORMATION PROCESSING, ICONIP 2017, PT I, 2017, 10634 : 556 - 564
  • [25] An Enhancing Framework for Botnet Detection Using Generative Adversarial Networks
    Yin, Chuanlong
    Zhu, Yuefei
    Liu, Shengli
    Fei, Jinlong
    Zhang, Hetong
    2018 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND BIG DATA (ICAIBD), 2018, : 228 - 234
  • [26] Improving Licence Plate Detection Using Generative Adversarial Networks
    Boby, Alden
    Brown, Dane
    PATTERN RECOGNITION AND IMAGE ANALYSIS (IBPRIA 2022), 2022, 13256 : 588 - 601
  • [27] Web Bot Detection Evasion Using Generative Adversarial Networks
    Iliou, Christos
    Kostoulas, Theodoros
    Tsikrika, Theodora
    Katos, Vasilis
    Vrochidis, Stefanos
    Kompatsiaris, Ioannis
    PROCEEDINGS OF THE 2021 IEEE INTERNATIONAL CONFERENCE ON CYBER SECURITY AND RESILIENCE (IEEE CSR), 2021, : 115 - 120
  • [28] Network intrusion detection based on conditional wasserstein variational autoencoder with generative adversarial network and one-dimensional convolutional neural networks
    He, Jiaxing
    Wang, Xiaodan
    Song, Yafei
    Xiang, Qian
    Chen, Chen
    APPLIED INTELLIGENCE, 2023, 53 (10) : 12416 - 12436
  • [29] Detection of Adversarial DDoS Attacks Using Symmetric Defense Generative Adversarial Networks
    Shieh, Chin-Shiuh
    Thanh-Tuan Nguyen
    Lin, Wan-Wei
    Lai, Wei Kuang
    Horng, Mong-Fong
    Miu, Denis
    ELECTRONICS, 2022, 11 (13)
  • [30] Brain Tumor Classification Using a Combination of Variational Autoencoders and Generative Adversarial Networks
    Ahmad, Bilal
    Sun, Jun
    You, Qi
    Palade, Vasile
    Mao, Zhongjie
    BIOMEDICINES, 2022, 10 (02)