Formononetin alleviates cerebral ischemia-reperfusion injury in rats by targeting the PARP-1/PARG/Iduna signaling pathway

被引:2
|
作者
Luo, Jie [1 ]
Cai, Youde [2 ]
Wei, Dingling [1 ]
Cao, Liping [1 ]
He, Qiansong [1 ]
Wu, Yuanhua [1 ]
机构
[1] Guizhou Univ Tradit Chinese Med, Clin Med Coll 1, Guiyang 550001, Guizhou, Peoples R China
[2] Guizhou Med Univ, Jinyang Hosp, Guiyang 550081, Guizhou, Peoples R China
关键词
Formononetin; Cerebral ischemia-reperfusion injury; PARP-1/PARG/Iduna; Ischemic stroke; APOPTOSIS-INDUCING FACTOR; POLY(ADP-RIBOSE) POLYMERASE; OXIDATIVE STRESS; DOWN-REGULATION; INHIBITOR; PROTECTS; IDUNA; PJ34; EXPRESSION; PI3K/AKT;
D O I
10.1016/j.brainres.2024.148845
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Formononetin has been demonstrated to protect against cerebral ischemia-reperfusion injury, however its mechanism has to be further researched. This study examined the effect of formononetin on cerebral ischemia-reperfusion injury in rats using the PARP-1/PARG/Iduna signaling pathway. In male SD rats, a model of cerebral ischemia-reperfusion injury was developed. Animals were randomly assigned to one of eight groups: Sham operation, Sham operation + formononetin, MCAO, MCAO + formononetin, PARP inhibitor (PJ34) + MCAO, formononetin + PJ34 + MCAO, PARG inhibitor (Ethacridine lactate) + MCAO, and ethacridine lactate + formononetin. The neurological deficit test, TTC staining, HE staining, Nissl staining, TUNEL staining, and western blotting were utilized to assess formononetin's protective effects in MCAO rats. The data show that formononetin can effectively alleviate neurological dysfunction and pathological changes in brain tissue in rats with cerebral ischemia-reperfusion injury, reduce the area of cerebral infarction and neuronal apoptosis, decrease the protein levels of PARP-1, PARG, Caspase-3, P53, and AIF in brain tissue, and increase the protein levels of Iduna and p-AKT. As a result, we concluded that formononetin improves brain ischemia-reperfusion injury in rats by modulating the PARP-1/PARG/Iduna signaling pathway.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Ischemic Postconditioning Alleviates Cerebral Ischemia-Reperfusion Injury Through Activating Autophagy During Early Reperfusion in Rats
    Sun, Yameng
    Zhang, Ting
    Zhang, Yan
    Li, Jinfeng
    Jin, Lei
    Sun, Yinyi
    Shi, Nan
    Liu, Kangyong
    Sun, Xiaojiang
    NEUROCHEMICAL RESEARCH, 2018, 43 (09) : 1826 - 1840
  • [42] Electroacupuncture alleviates cerebral ischemia and reperfusion injury via modulation of the ERK1/2 signaling pathway
    Jin, Xiao-lu
    Li, Peng-fei
    Zhang, Chun-bing
    Wu, Jin-ping
    Feng, Xi-lian
    Zhang, Ying
    Shen, Mei-hong
    NEURAL REGENERATION RESEARCH, 2016, 11 (07) : 1090 - 1098
  • [43] Electroacupuncture alleviates cerebral ischemia and reperfusion injury via modulation of the ERK1/2 signaling pathway
    Xiao-lu Jin
    Peng-fei Li
    Chun-bing Zhang
    Jin-ping Wu
    Xi-lian Feng
    Ying Zhang
    Mei-hong Shen
    Neural Regeneration Research, 2016, 11 (07) : 1090 - 1098
  • [44] Ischemic Preconditioning Alleviates Cerebral Ischemia-Reperfusion Injury by Interfering With Glycocalyx
    Zhang, Yi-Na
    Wu, Qiong
    Zhang, Nan-Nan
    Chen, Hui-Sheng
    TRANSLATIONAL STROKE RESEARCH, 2023, 14 (06) : 929 - 940
  • [45] Bergenin alleviates myocardial ischemia-reperfusion injury via SIRT1 signaling
    Liu, Yingying
    Tan, Yanzhen
    Cao, Guojie
    Shi, Lei
    Song, Yujie
    Shan, Wenju
    Zhang, Miao
    Li, Panpan
    Zhou, Haitao
    Zhang, Bing
    Sun, Yang
    Yi, Wei
    BIOMEDICINE & PHARMACOTHERAPY, 2023, 158
  • [46] MiR-361-3p alleviates cerebral ischemia-reperfusion injury by targeting NACC1 through the PINK1/Parkin pathway
    Ye, Xihong
    Song, Hua
    Hu, Huimin
    Zhou, Chunli
    Chen, Qinyi
    Hong, Lin
    Huang, Min
    Zhu, Hongfei
    JOURNAL OF MOLECULAR HISTOLOGY, 2022, 53 (02) : 357 - 367
  • [47] Sevoflurane improves renal ischemia-reperfusion injury in rats through RISK signaling pathway
    Wang, Bo
    Yan, Xin
    Zou, Xin
    TROPICAL JOURNAL OF PHARMACEUTICAL RESEARCH, 2023, 22 (08) : 1597 - 1604
  • [48] Dexmedetomidine pretreatment alleviates cerebral ischemia-reperfusion injury in rats through resisting oxidative damage and regulating TGF-β1/Smad2/3 signaling pathway
    Luo, Jun
    Hao, Peng
    Gao, Xuesong
    Wang, Yuchuan
    Sun, Ruiqiang
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2018, 11 (08): : 8479 - 8486
  • [49] Suppression of TLR4/NF-κB Signaling Pathway Improves Cerebral Ischemia-Reperfusion Injury in Rats
    Zhao, Hang
    Chen, Zhuo
    Xie, Li-Juan
    Liu, Gui-Feng
    MOLECULAR NEUROBIOLOGY, 2018, 55 (05) : 4311 - 4319
  • [50] Dexmedetomidine alleviates cerebral ischemia-reperfusion injury in rats via inhibition of hypoxia-inducible factor-1α
    Wang, Yuan-Qing
    Tang, Yu-Feng
    Yang, Ming-Kun
    Huang, Xi-Zhao
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2019, 120 (05) : 7834 - 7844