Terahertz phonon engineering with van der Waals heterostructures

被引:2
|
作者
Yoon, Yoseob [1 ,2 ,3 ]
Lu, Zheyu [2 ,4 ]
Uzundal, Can [2 ,5 ]
Qi, Ruishi [1 ,2 ]
Zhao, Wenyu [1 ]
Chen, Sudi [1 ,6 ]
Feng, Qixin [1 ,2 ]
Kim, Woochang [1 ,2 ]
Naik, Mit H. [1 ,2 ]
Watanabe, Kenji [7 ]
Taniguchi, Takashi [8 ]
Louie, Steven G. [1 ,2 ]
Crommie, Michael F. [1 ,2 ,6 ]
Wang, Feng [1 ,2 ,6 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[3] Northeastern Univ, Dept Mech & Ind Engn, Boston, MA 02115 USA
[4] Univ Calif Berkeley, Grad Grp Appl Sci & Technol, Berkeley, CA USA
[5] Univ Calif Berkeley, Dept Chem, Berkeley, CA USA
[6] Kavli Energy Nanosci Inst, Berkeley, CA 94720 USA
[7] Natl Inst Mat Sci, Res Ctr Elect & Opt Mat, Tsukuba, Japan
[8] Natl Inst Mat Sci, Res Ctr Mat Nanoarchitecton, Tsukuba, Japan
基金
日本学术振兴会;
关键词
BREATHING MODES; GENERATION; LATTICE; TRANSMISSION; VIBRATIONS; GRAPHITE; GRAPHENE; SHEAR;
D O I
10.1038/s41586-024-07604-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Phonon engineering at gigahertz frequencies forms the foundation of microwave acoustic filters1, acousto-optic modulators2 and quantum transducers3,4. Terahertz phonon engineering could lead to acoustic filters and modulators at higher bandwidth and speed, as well as quantum circuits operating at higher temperatures. Despite their potential, methods for engineering terahertz phonons have been limited due to the challenges of achieving the required material control at subnanometre precision and efficient phonon coupling at terahertz frequencies. Here we demonstrate the efficient generation, detection and manipulation of terahertz phonons through precise integration of atomically thin layers in van der Waals heterostructures. We used few-layer graphene as an ultrabroadband phonon transducer that converts femtosecond near-infrared pulses to acoustic-phonon pulses with spectral content up to 3 THz. A monolayer WSe2 is used as a sensor. The high-fidelity readout was enabled by the exciton-phonon coupling and strong light-matter interactions. By combining these capabilities in a single heterostructure and detecting responses to incident mechanical waves, we performed terahertz phononic spectroscopy. Using this platform, we demonstrate high-Q terahertz phononic cavities and show that a WSe2 monolayer embedded in hexagonal boron nitride can efficiently block the transmission of terahertz phonons. By comparing our measurements to a nanomechanical model, we obtained the force constants at the heterointerfaces. Our results could enable terahertz phononic metamaterials for ultrabroadband acoustic filters and modulators and could open new routes for thermal engineering. In an application of terahertz phonon engineering, terahertz phonons were generated, detected and manipulated through precise integration of atomically thin layers in van der Waals heterostructures.
引用
收藏
页码:771 / 776
页数:16
相关论文
共 50 条
  • [41] Moire patterns in van der Waals heterostructures
    Le Ster, Maxime
    Maerk, Tobias
    Kowalczyk, Pawel J.
    Brown, Simon A.
    [J]. PHYSICAL REVIEW B, 2019, 99 (07)
  • [42] VAN DER WAALS HETEROSTRUCTURES The natural way
    Prando, Giacomo
    [J]. NATURE NANOTECHNOLOGY, 2017, 12 (03) : 191 - 191
  • [43] Thermal response in van der Waals heterostructures
    Gandi, Appala Naidu
    Alshareef, Husam N.
    Schwingenschlogl, Udo
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (03)
  • [44] Fabrication and applications of van der Waals heterostructures
    Junlei Qi
    Zongxiao Wu
    Wenbin Wang
    Kai Bao
    Lingzhi Wang
    Jingkun Wu
    Chengxuan Ke
    Yue Xu
    Qiyuan He
    [J]. International Journal of Extreme Manufacturing, 2023, 5 (02) : 154 - 174
  • [45] Quantum microscopy with van der Waals heterostructures
    A. J. Healey
    S. C. Scholten
    T. Yang
    J. A. Scott
    G. J. Abrahams
    I. O. Robertson
    X. F. Hou
    Y. F. Guo
    S. Rahman
    Y. Lu
    M. Kianinia
    I. Aharonovich
    J.-P. Tetienne
    [J]. Nature Physics, 2023, 19 : 87 - 91
  • [46] Ultrafast dynamics in van der Waals heterostructures
    Jin, Chenhao
    Ma, Eric Yue
    Karni, Ouri
    Regan, Emma C.
    Wang, Feng
    Heinz, Tony F.
    [J]. NATURE NANOTECHNOLOGY, 2018, 13 (11) : 994 - 1003
  • [47] Multiferroicity in atomic van der Waals heterostructures
    Cheng Gong
    Eun Mi Kim
    Yuan Wang
    Geunsik Lee
    Xiang Zhang
    [J]. Nature Communications, 10
  • [48] Picosecond photoresponse in van der Waals heterostructures
    Massicotte, M.
    Schmidt, P.
    Vialla, F.
    Schaedler, K. G.
    Reserbat-Plantey, A.
    Watanabe, K.
    Taniguchi, T.
    Tielrooij, K. J.
    Koppens, F. H. L.
    [J]. NATURE NANOTECHNOLOGY, 2016, 11 (01) : 42 - +
  • [49] Exciton landscape in van der Waals heterostructures
    Hagel, Joakim
    Brem, Samuel
    Linderalv, Christopher
    Erhart, Paul
    Malic, Ermin
    [J]. PHYSICAL REVIEW RESEARCH, 2021, 3 (04):
  • [50] Dielectric Genome of van der Waals Heterostructures
    Andersen, Kirsten
    Latini, Simone
    Thygesen, Kristian S.
    [J]. NANO LETTERS, 2015, 15 (07) : 4616 - 4621